Triboelectric nanogenerator based wearable energy harvesting devices

被引:4
作者
Ding Ya-Fei [1 ,2 ]
Chen Xiang-Yu [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing Key Lab Micronano Energy & Sensor, CAS Ctr Excellence Nanosci, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerator; wearable electronics; energy harvesting technology; MECHANICAL ENERGY; ELECTRONIC-SKIN; TECHNOLOGY; WATERPROOF; CONVERSION; SYSTEM; SENSOR;
D O I
10.7498/aps.69.20200867
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the miniaturization and functionalization of electronic devices, wearable electronics has drawn generally attention, but the energy supply for wearable electronics becomes one of the most burning questions. The triboelectric nanogenerator based on the coupling effects of electrostatic induction and triboelectrification, which has low cost and wide material selection attributes, proves to be a powerful technology for converting low-frequency mechanical energy into electricity. In this review, the four fundamental modes of triboelectric nanogenerator and the physical mechanism of contact-electrification are presented first. Then, we introduce the research progress of wearable from the direct and indirect aspects. Directly wearable triboelectric nanogenerator can be integrated into a skin while indirectly wearable device is only allowed to assemble into user's clothing or its appendages. In addition, the power management circuits for driving electronic devices and energy storage are summarized. Finally, we discuss the current bottlenecks and present our perspectives on future directions in this field.
引用
收藏
页数:20
相关论文
共 87 条
[21]  
Lai Y C, 2017, ADV FUNCT MATER, V27
[22]   Electric Eel-Skin-Inspired Mechanically Durable and Super-Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-Skin Applications [J].
Lai, Ying-Chih ;
Deng, Jianan ;
Niu, Simiao ;
Peng, Wenbo ;
Wu, Changsheng ;
Liu, Ruiyuan ;
Wen, Zhen ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2016, 28 (45) :10024-10032
[23]   Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy [J].
Lei, Rui ;
Shi, Yuxiang ;
Ding, Yafei ;
Nie, Jinhui ;
Li, Shuyao ;
Wang, Fan ;
Zhai, Hua ;
Chen, Xiangyu ;
Wang, Zhong Lin .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (07) :2178-2190
[24]   Effects of pulse charging on the performances of lithium-ion batteries [J].
Li, Shaoqing ;
Wu, Qiang ;
Zhang, Dan ;
Liu, Zhongsheng ;
He, Yi ;
Wang, Zhong Lin ;
Sun, Chunwen .
NANO ENERGY, 2019, 56 :555-562
[25]   Contributions of Different Functional Groups to Contact Electrification of Polymers [J].
Li Shuyao ;
Nie Jinhui ;
Shi Yuxiang ;
Tao Xinglin ;
Wang Fan ;
Tian Jingwen ;
Lin Shiquan ;
Chen Xiangyu ;
Wang Zhong Lin .
ADVANCED MATERIALS, 2020, 32 (25)
[26]   Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation [J].
Li, Shuyao ;
Fan, Yong ;
Chen, Huaqiang ;
Nie, Jinhui ;
Liang, Yanxia ;
Tao, Xinglin ;
Zhang, Jian ;
Chen, Xiangyu ;
Fu, Engang ;
Wang, Zhonglin .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (03) :896-907
[27]   Logical integration device for two-dimensional semiconductor transition metal sulfide [J].
Li Wei-Sheng ;
Zhou Jian ;
Wang Han-Chen ;
Wang Shu-Xian ;
Yu Zhi-Hao ;
Li Song-Lin ;
Shi Yi ;
Wang Xin-Ran .
ACTA PHYSICA SINICA, 2017, 66 (21)
[28]  
Lin SQ, 2020, NAT COMMUN, V11, DOI [10.1038/s41467-019-14278-9, 10.1038/s41467-020-17231-3]
[29]   Anodic bonding driven by the pulse current signal of triboelectric nanogenerator [J].
Lin, Yuxing ;
Nie, Jinhui ;
Bai, Yu ;
Li, Shuyao ;
Xu, Liang ;
Wang, Fan ;
Ding, Yafei ;
Tian, Jingwen ;
Li, Yufang ;
Chen, Xiangyu ;
Shen, Honglie .
NANO ENERGY, 2020, 73
[30]   An airtight-cavity-structural triboelectric nanogenerator-based insole for high performance biomechanical energy harvesting [J].
Lin, Zhiming ;
Wu, Yufen ;
He, Qiang ;
Sun, ChenChen ;
Fan, Endong ;
Zhou, Zhihao ;
Liu, Mingyang ;
Wei, Wei ;
Yang, Jin .
NANOSCALE, 2019, 11 (14) :6802-6809