Multiple solutions for a discrete boundary value problem involving the p-Laplacian

被引:79
作者
Candito, Pasquale [1 ]
Giovannelli, Nicola [2 ]
机构
[1] Univ Reggio Calabria, Fac Ingn, Dipartimento Informat Matemat Elettron & Trasport, I-89100 Reggio Di Calabria, Italy
[2] Univ Palermo, Fac Ingn, Dipartimento Metodi & Modelli Matemat, I-90128 Palermo, Italy
关键词
difference equations; discrete boundary value problems; multiple solutions; p-Laplacian; critical points theory;
D O I
10.1016/j.camwa.2008.01.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiple solutions for a discrete boundary value problem involving the p-Laplacian are established. Our approach is based on critical point theory. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:959 / 964
页数:6
相关论文
共 6 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[3]  
Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
[4]  
Averna D., 2003, Topol Methods Nonlinear Anal, V22, P93, DOI [10.12775/TMNA.2003.029, DOI 10.12775/TMNA.2003.029]
[5]   Nontrivial solutions of boundary value problems of second-order difference equations [J].
Bai, Dingyong ;
Xu, Yuantong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :297-302
[6]   Positive solutions for continuous and discrete boundary value problems to the one-dimension p-Laplacian [J].
Jiang, DQ ;
Chu, JF ;
O'Regan, D ;
Agarwal, RP .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (04) :523-534