Multiple solutions for a discrete boundary value problem involving the p-Laplacian

被引:77
作者
Candito, Pasquale [1 ]
Giovannelli, Nicola [2 ]
机构
[1] Univ Reggio Calabria, Fac Ingn, Dipartimento Informat Matemat Elettron & Trasport, I-89100 Reggio Di Calabria, Italy
[2] Univ Palermo, Fac Ingn, Dipartimento Metodi & Modelli Matemat, I-90128 Palermo, Italy
关键词
difference equations; discrete boundary value problems; multiple solutions; p-Laplacian; critical points theory;
D O I
10.1016/j.camwa.2008.01.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiple solutions for a discrete boundary value problem involving the p-Laplacian are established. Our approach is based on critical point theory. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:959 / 964
页数:6
相关论文
共 6 条
  • [1] Agarwal R.P., 1999, POSITIVE SOLUTIONS D
  • [2] Multiple positive solutions of singular discrete p-Laplacian problems via variational methods
    Agarwal, Ravi P.
    Perera, Kanishka
    O'Regan, Donal
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) : 93 - 99
  • [3] Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
  • [4] Averna D., 2003, Topol Methods Nonlinear Anal, V22, P93, DOI [10.12775/TMNA.2003.029, DOI 10.12775/TMNA.2003.029]
  • [5] Nontrivial solutions of boundary value problems of second-order difference equations
    Bai, Dingyong
    Xu, Yuantong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) : 297 - 302
  • [6] Positive solutions for continuous and discrete boundary value problems to the one-dimension p-Laplacian
    Jiang, DQ
    Chu, JF
    O'Regan, D
    Agarwal, RP
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (04): : 523 - 534