PENALTY METHODS FOR EDGE PLASMA TRANSPORT IN A TOKAMAK

被引:0
作者
Auphan, Thomas [1 ]
Angot, Philippe [1 ]
Gues, Olivier [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, LATP,UMR 7353, F-13453 Marseille, France
来源
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS | 2014年 / 8卷
关键词
Nonlinear; hyperbolic system; boundary value problem; penalization method; plasma transport;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The volume penalty method belongs to the immersed boundary methods, which is used for the numerical simulation of boundaries in PDE problems. This paper focuses on the mathematical aspect of penalization for quasilinear hyperbolic problems with non characteristic boundary. A penalty method which does not generate any boundary layer is proposed, with an application to edge plasma transport for a tokamak.
引用
收藏
页码:277 / 284
页数:8
相关论文
共 9 条
  • [1] Angot Ph., 2012, OPTIMAL PENALT UNPUB
  • [2] Penalty Methods for the Hyperbolic System Modelling the Wall-Plasma Interaction in a Tokamak
    Angot, Philippe
    Auphan, Thomas
    Gues, Olivier
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 31 - 38
  • [3] Auphan T., 2013, ADV DIFFERE IN PRESS
  • [4] Carbou G, 2003, Adv. Differential Equations, V8, P1453
  • [5] PENALIZATION APPROACH TO SEMI-LINEAR SYMMETRIC HYPERBOLIC PROBLEMS WITH DISSIPATIVE BOUNDARY CONDITIONS
    Fornet, Bruno
    Gues, Olivier
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) : 827 - 845
  • [7] Penalization modeling of a limiter in the Tokamak edge plasma
    Isoardi, L.
    Chiavassa, G.
    Ciraolo, G.
    Haldenwang, P.
    Serre, E.
    Ghendrih, Ph.
    Sarazin, Y.
    Schwander, F.
    Tamain, P.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) : 2220 - 2235
  • [8] DIFFERENTIABILITY OF SOLUTIONS TO HYPERBOLIC INITIAL-BOUNDARY VALUE-PROBLEMS
    RAUCH, JB
    MASSEY, FJ
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 189 (462) : 303 - 318
  • [9] Some approximate Godunov schemes to compute shallow-water equations with topography
    Thierry, G
    Hérard, JM
    Seguin, N
    [J]. COMPUTERS & FLUIDS, 2003, 32 (04) : 479 - 513