Observables on perfect MV-algebras

被引:11
作者
Di Nola, Antonio [1 ]
Dvurecenskij, Anatolij [2 ,3 ]
Lenzi, Giacomo [1 ]
机构
[1] Univ Salerno, Dept Math, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
[2] Slovak Acad Sci, Math Inst, Stefanikova 49, SK-81473 Bratislava, Slovakia
[3] Palacky Univ, Dept Algebra Geom, 17 Listopadu 12, CZ-77146 Olomouc, Czech Republic
关键词
MV-algebra; Perfect MV-algebra; Principal radical; Rad-monotone sigma-complete perfect MV-algebra; Observable; Spectral resolution; State; LOOMIS-SIKORSKI THEOREM;
D O I
10.1016/j.fss.2018.11.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An observable on an MV-algebra is any sigma-homomorphism from the Borel sigma-algebra B(R) into the MV-algebra which maps a sequence of disjoint Borel sets onto summable elements of the MV-algebra. We establish that there is a one-to-one correspondence between observables on Rad-Dedekind sigma-complete perfect MV-algebras with principal radicals and their spectral resolutions. It means that we show that our partial information on an observable known only on all intervals of the form (-infinity, t) is sufficient to determine the whole information about the observable. In addition, this correspondence allows us to define the Olson order which is a partial order on the set O(M) of all observables on an MV-algebra Mas well as, we can define a sum of observables, so that O(M) becomes a lattice-ordered semigroup. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 81
页数:25
相关论文
共 25 条
[1]  
[Anonymous], 1974, Measure Theory
[2]  
[Anonymous], 1986, MATH SURVEYS MONOGR
[3]  
Barbieri G., 2002, HDB MEASURE THEORY, P911
[4]   Yosida type representation for perfect MV-algebras [J].
Belluce, LP ;
DiNola, A .
MATHEMATICAL LOGIC QUARTERLY, 1996, 42 (04) :551-563
[5]  
Catlin D., 1968, INT J THEOR PHYS, V1, P285, DOI DOI 10.1007/BF00668669
[6]  
Chang CC., 1958, Trans. Am. Math. Soc, V88, P467, DOI [10.1090/S0002-9947-1958-0094302-9, DOI 10.1090/S0002-9947-1958-0094302-9]
[7]  
Cignoli R.L., 2013, Algebraic Foundations of Many-Valued Reasoning, V7
[8]   COMBINING BOOLEAN ALGEBRAS AND l-GROUPS IN THE VARIETY GENERATED BY CHANG'S MV-ALGEBRA [J].
Di Nola, A. ;
Ferraioli, A. R. ;
Gerla, B. .
MATHEMATICA SLOVACA, 2016, 66 (02) :387-400
[9]  
Di Nola A, 2000, STUD FUZZ SOFT COMP, V57, P105
[10]  
Di Nola A., 1994, Studia Logica, V53, P417, DOI 10.1007/BF01057937