CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis

被引:101
作者
Price, Valerie J. [1 ]
Huo, Wenwen [1 ]
Sharifi, Ardalan [1 ]
Palmer, Kelli L. [1 ]
机构
[1] Univ Texas Dallas, Dept Biol Sci, Richardson, TX 75083 USA
基金
美国国家卫生研究院;
关键词
Enterococcus; antibiotic resistance; CRISPR; plasmids; horizontal gene transfer; PHEROMONE RESPONSE; MESSENGER-RNA; VANCOMYCIN; DNA; VIRULENCE; SYSTEM; PCF10; IDENTIFICATION; SEQUENCE; ELEMENTS;
D O I
10.1128/mSphere.00064-16
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrowhost- range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the similar to 620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrugresistant E. faecalis. IMPORTANCE Enterococcus faecalis is a bacterium that normally inhabits the gastrointestinal tracts of humans and other animals. Although these bacteria are members of our native gut flora, they can cause life-threatening infections in hospitalized patients. Antibiotic resistance genes appear to be readily shared among high-risk E. faecalis strains, and multidrug resistance in these bacteria limits treatment options for infections. Here, we find that CRISPR-Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, significantly impact the spread of antibiotic resistance genes in E. faecalis populations. The loss of these systems in high-risk E. faecalis suggests that they are immunocompromised, a tradeoff that allows them to readily acquire new genes and adapt to new antibiotics.
引用
收藏
页数:13
相关论文
共 65 条
[1]  
Agudelo Higuita N, 2014, ENTEROCOCCI COMMENSA
[2]  
[Anonymous], 2014, ENTEROCOCCI COMMENSA
[3]  
[Anonymous], 2014, Antibiotic resistance in foodborne germs is an ongoing threat
[4]   The rise of the Enterococcus: beyond vancomycin resistance [J].
Arias, Cesar A. ;
Murray, Barbara E. .
NATURE REVIEWS MICROBIOLOGY, 2012, 10 (04) :266-278
[5]   CHARACTERIZATION OF TN1546, A TN3-RELATED TRANSPOSON CONFERRING GLYCOPEPTIDE RESISTANCE BY SYNTHESIS OF DEPSIPEPTIDE PEPTIDOGLYCAN PRECURSORS IN ENTEROCOCCUS-FAECIUM BM4147 [J].
ARTHUR, M ;
MOLINAS, C ;
DEPARDIEU, F ;
COURVALIN, P .
JOURNAL OF BACTERIOLOGY, 1993, 175 (01) :117-127
[6]   The RAST server: Rapid annotations using subsystems technology [J].
Aziz, Ramy K. ;
Bartels, Daniela ;
Best, Aaron A. ;
DeJongh, Matthew ;
Disz, Terrence ;
Edwards, Robert A. ;
Formsma, Kevin ;
Gerdes, Svetlana ;
Glass, Elizabeth M. ;
Kubal, Michael ;
Meyer, Folker ;
Olsen, Gary J. ;
Olson, Robert ;
Osterman, Andrei L. ;
Overbeek, Ross A. ;
McNeil, Leslie K. ;
Paarmann, Daniel ;
Paczian, Tobias ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Reich, Claudia ;
Stevens, Rick ;
Vassieva, Olga ;
Vonstein, Veronika ;
Wilke, Andreas ;
Zagnitko, Olga .
BMC GENOMICS, 2008, 9 (1)
[7]   Two targets in pCF10 DNA for PrgX binding:: Their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible conjugation [J].
Bae, T ;
Kozlowicz, B ;
Dunny, GM .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 315 (05) :995-1007
[8]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[9]   Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials [J].
Bikard, David ;
Euler, Chad W. ;
Jiang, Wenyan ;
Nussenzweig, Philip M. ;
Goldberg, Gregory W. ;
Duportet, Xavier ;
Fischetti, Vincent A. ;
Marraffini, Luciano A. .
NATURE BIOTECHNOLOGY, 2014, 32 (11) :1146-1150
[10]   Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OGIRF [J].
Bourgogne, Agathe ;
Garsin, Danielle A. ;
Qin, Xiang ;
Singh, Kavindra V. ;
Sillanpaa, Jouko ;
Yerrapragada, Shailaja ;
Ding, Yan ;
Dugan-Rocha, Shannon ;
Buhay, Christian ;
Shen, Hua ;
Chen, Guan ;
Williams, Gabrielle ;
Muzny, Donna ;
Maadani, Arash ;
Fox, Kristina A. ;
Gioia, Jason ;
Chen, Lei ;
Shang, Yue ;
Arias, Cesar A. ;
Nallapareddy, Sreedhar R. ;
Zhao, Meng ;
Prakash, Vittal P. ;
Chowdhury, Shahreen ;
Jiang, Huaiyang ;
Gibbs, Richard A. ;
Murray, Barbara E. ;
Highlander, Sarah K. ;
Weinstock, George M. .
GENOME BIOLOGY, 2008, 9 (07)