An approach to the numerical verification of solutions for nonlinear elliptic problems with local uniqueness

被引:19
作者
Nagatou, K [1 ]
Yamamoto, N [1 ]
Nakao, MT [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka 8128581, Japan
关键词
D O I
10.1080/01630569908816910
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a numerical method to verify the existence and local uniqueness of solutions to nonlinear elliptic equations. We numerically construct a set containing solutions which satisfies the hypothesis of Banach's fixed point theorem in a certain Sobolev space. By using the finite element approximation and constructive error estimates, we calculate the eigenvalue bound with smallest absolute value to evaluate the norm of the inverse of the linearized operator. Utilizing this bound we derive a verification condition of the Newton-Kantorovich type. Numerical examples are presented.
引用
收藏
页码:543 / 565
页数:23
相关论文
共 23 条