Electrical Properties of Ultrathin Platinum Films by Plasma-Enhanced Atomic Layer Deposition

被引:25
作者
Kim, Hyo Jin K. [1 ]
Kaplan, Kirsten E. [1 ]
Schindler, Peter [2 ]
Xu, Shicheng [1 ]
Winterkorn, Martin M. [1 ]
Heinz, David B. [1 ]
English, Timothy S. [1 ]
Provine, J. [2 ]
Prinz, Fritz B. [1 ]
Kenny, Thomas W. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
thin film; platinum; plasma-enhanced atomic layer deposition; size effect; electrical conductivity; temperature coefficient of resistance; RESISTIVITY; NUCLEATION; SCATTERING; MECHANISM; SURFACES; STRESSES; GROWTH; SENSOR;
D O I
10.1021/acsami.8b21054
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The ability to deposit thin and conformal films has become of great importance because of downscaling of devices. However, because of nucleation difficulty, depositing an electrically stable and thin conformal platinum film on an oxide nucleation layer has proven challenging. By using plasma-enhanced atomic layer deposition (PEALD) and TiO2 as a nucleation layer, we achieved electrically continuous PEALD platinum films down to a thickness of 3.7 nm. Results show that for films as thin as 5.7 nm, the Mayadas-Shatzkes (MS) model for electrical conductivity and the Tellier-Tosser model for temperature coefficient of resistance hold. Although the experimental values start to deviate from the MS model below 5.7 nm because of incomplete Pt coverage, the films still show root mean square electrical stability better than 50 ppm over time, indicating that these films are not only electrically continuous but also sufficiently reliable for use in many practical applications.
引用
收藏
页码:9594 / 9599
页数:6
相关论文
共 45 条
[1]   Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3 W/cm2 at 450 °C [J].
An, Jihwan ;
Kim, Young-Beom ;
Park, Joonsuk ;
Guer, Turgut M. ;
Prinz, Fritz B. .
NANO LETTERS, 2013, 13 (09) :4551-4555
[2]   Growth of continuous and ultrathin platinum films on tungsten adhesion layers using atomic layer deposition techniques [J].
Baker, L. ;
Cavanagh, A. S. ;
Yin, J. ;
George, S. M. ;
Kongkanand, A. ;
Wagner, F. T. .
APPLIED PHYSICS LETTERS, 2012, 101 (11)
[3]   Nucleation and growth of Pt atomic layer deposition on Al2O3 substrates using (methylcyclopentadienyl)-trimethyl platinum and O2 plasma [J].
Baker, L. ;
Cavanagh, A. S. ;
Seghete, D. ;
George, S. M. ;
Mackus, A. J. M. ;
Kessels, W. M. M. ;
Liu, Z. Y. ;
Wagner, F. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[4]   Atomic layer deposition of ultrathin platinum films on tungsten atomic layer deposition adhesion layers: Application to high surface area substrates [J].
Clancey, Joel W. ;
Cavanagh, Andrew S. ;
Kukreja, Ratandeep S. ;
Kongkanand, Anusorn ;
George, Steven M. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2015, 33 (01)
[5]  
Colinge JP, 2010, NAT NANOTECHNOL, V5, P225, DOI [10.1038/nnano.2010.15, 10.1038/NNANO.2010.15]
[6]   Development and Evaluation of High-Stability Metal-Foil Resistor With a Resistance of 1 kΩ [J].
Domae, Atsushi ;
Abe, Takayuki ;
Kumagai, Masaya ;
Zama, Matsuo ;
Oe, Takehiko ;
Kaneko, Nobu-hisa .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (06) :1490-1495
[7]   Evaluation of platinum as a structural thin film material for RF-MEMS devices [J].
Ekkels, P. ;
Rottenberg, X. ;
Puers, R. ;
Tilmans, H. A. C. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (06)
[8]   Nucleation and growth during tungsten atomic layer deposition on SiO2 surfaces [J].
Elam, JW ;
Nelson, CE ;
Grubbs, RK ;
George, SM .
THIN SOLID FILMS, 2001, 386 (01) :41-52
[9]   Mechanism, Products, and Growth Rate of Atomic Layer Deposition of Noble Metals [J].
Elliott, Simon D. .
LANGMUIR, 2010, 26 (12) :9179-9182
[10]   Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches [J].
Erkens, I. J. M. ;
Verheijen, M. A. ;
Knoops, H. C. M. ;
Keuning, W. ;
Roozeboom, F. ;
Kessels, W. M. M. .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (05)