Optimal traps in graphene

被引:32
作者
Downing, C. A. [1 ]
Pearce, A. R. [1 ]
Churchill, R. J. [1 ]
Portnoi, M. E. [1 ,2 ]
机构
[1] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England
[2] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078400 Natal, RN, Brazil
基金
英国工程与自然科学研究理事会;
关键词
MASSLESS DIRAC FERMIONS; LEVINSONS THEOREM; ATOMIC COLLAPSE; SCATTERING; PARTICLES; TRANSPORT; STATES; ELECTRONS; IMPURITY;
D O I
10.1103/PhysRevB.92.165401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We transform the two-dimensional Dirac-Weyl equation, which governs the charge carriers in graphene, into a nonlinear first-order differential equation for scattering phase shift, using the so-called variable-phase method. This allows us to utilize the Levinson theorem, relating scattering phase shifts of a slow particle to its bound states, to find zero-energy bound states created electrostatically in realistic structures. These confined states are formed at critical potential strengths, which leads us to posit the use of "optimal traps" to combat the chiral tunneling found in graphene: this could be explored experimentally with an artificial network of point charges held above the graphene layer. We also discuss scattering on these states and find that the s states create a dominant peak in the scattering cross section as the energy tends towards the Dirac point energy, suggesting a dominant contribution to the resistivity.
引用
收藏
页数:9
相关论文
共 87 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[3]   Theory of charged impurity scattering in two-dimensional graphene [J].
Adam, S. ;
Hwang, E. H. ;
Rossi, E. ;
Das Sarma, S. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1072-1079
[4]   Quantum capacitance and Landau parameters of massless Dirac fermions in graphene [J].
Asgari, Reza ;
Katsnelson, Mikhail I. ;
Polini, Marco .
ANNALEN DER PHYSIK, 2014, 526 (9-10) :359-365
[5]  
Babikov V., 1971, METHOD PHASE FUNCTIO
[6]   Electrostatic Confinement of Electrons in an Integrable Graphene Quantum Dot [J].
Bardarson, J. H. ;
Titov, M. ;
Brouwer, P. W. .
PHYSICAL REVIEW LETTERS, 2009, 102 (22)
[7]   Resonant low-energy electron scattering on short-range impurities in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2008, 78 (11)
[8]   Search for Majorana Fermions in Superconductors [J].
Beenakker, C. W. J. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 4, 2013, 4 :113-136
[9]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[10]  
Calogero F., 1967, Variable Phase Approach to Potential Scattering