Lazard's theorem for differential algebraic groups and proalgebraic groups

被引:2
作者
Chalupnik, M
Kowalski, P
机构
[1] Warsaw Univ, Inst Matemat, PL-02097 Warsaw, Poland
[2] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
D O I
10.2140/pjm.2002.202.305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a differential group whose underlying variety is an a ne space is unipotent. The problem is reduced to an infinite-dimensional version of Lazard's Theorem.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 11 条
[1]   GEOMETRY OF DIFFERENTIAL POLYNOMIAL FUNCTIONS, .1. ALGEBRAIC-GROUPS [J].
BUIUM, A .
AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (06) :1385-1444
[2]  
BUIUM A, IN PRESS COLLECTED W
[3]  
Cassidy P., 1977, CONTRIBUTIONS ALGEBR, P83
[4]  
Deligne P., 1977, Lecture Notes in Math., V569
[5]  
Humphreys J., 1981, Linear algebraic groups
[6]  
Kowalski P, 2000, AM J MATH, V122, P213
[7]  
LAZARD M, 1955, CR HEBD ACAD SCI, V241, P1687
[8]  
Milne J. S., 1980, PRINCETON MATH SERIE
[9]  
SERRE JP, 1958, SEMINAIRE CHEVALLEY, V2
[10]  
Tamme G, 1994, Introduction to etale cohomology