Lord-Shulman Thermoelasticity with Microtemperatures

被引:30
作者
Bazarra, Noelia [1 ]
Fernandez, Jose R. [1 ]
Quintanilla, Ramon [2 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 1, Escola Enxenaria Telecomunicac, Campus As Lagoas Marcosende S-N, Vigo 36310, Spain
[2] UPC, ESEIAAT, Dept Matemat, Colom 11, Terrassa Barcelona 08222, Spain
关键词
Thermoelasticity; Microtemperatures; Lord-Shulman; Semigroups; Stability; Existence; LINEAR ELASTIC-MATERIALS; EXPONENTIAL DECAY; III THERMOELASTICITY; POROUS-ELASTICITY; WAVES; STABILITY; BEHAVIOR;
D O I
10.1007/s00245-020-09691-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Lord-Shulman thermoelastic theory with porosity and microtemperatures. The new aspect we propose here is to introduce a relaxation parameter in the microtemperatures. Then we obtain an existence theorem for the solutions. In the case that a certain symmetry is satisfied by the constitutive tensors, we prove that the semigroup is dissipative. In fact, an exponential decay of solutions can be shown for the one-dimensional case. In the last section, we restrict our attention to the case where we have an isotropic and homogeneous material without porosity effects and assuming that two of the constitutive parameters have the same sign. We see that the semigroup is dissipative.
引用
收藏
页码:1667 / 1685
页数:19
相关论文
共 47 条
[31]   Exponential Stability in Three-Dimensional Type III Thermo-Porous-Elasticity with Microtemperatures [J].
Magana, Antonio ;
Quintanilla, Ramon .
JOURNAL OF ELASTICITY, 2020, 139 (01) :153-161
[32]   Exponential stability in type III thermoelasticity with microtemperatures [J].
Magana, Antonio ;
Quintanilla, Ramon .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05)
[33]   Exponential decay in one-dimensional type II thermoviscoelasticity with voids [J].
Miranville, Alain ;
Quintanilla, Ramon .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
[34]   Exponential decay in one-dimensional type III thermoelasticity with voids [J].
Miranville, Alain ;
Quintanilla, Ramon .
APPLIED MATHEMATICS LETTERS, 2019, 94 :30-37
[35]  
NUNZIATO JW, 1979, ARCH RATION MECH AN, V72, P175, DOI 10.1007/BF00249363
[36]   Analyticity in porous-thermoelasticity with microtemperatures [J].
Pamplona, Paulo Xavier ;
Munoz Rivera, Jaime E. ;
Quintanilla, Ramon .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :645-655
[37]   On the decay of solutions for porous-elastic systems with history [J].
Pamplona, Paulo Xavier ;
Munoz Rivera, Jaime E. ;
Quintanilla, Ramon .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :682-705
[38]   Rayleigh waves in isotropic strongly elliptic thermoelastic materials with microtemperatures [J].
Passarella, F. ;
Tibullo, V. ;
Viccione, G. .
MECCANICA, 2017, 52 (13) :3033-3041
[39]   ON GROWTH AND CONTINUOUS DEPENDENCE IN THERMOELASTICITY WITH MICROTEMPERATURES [J].
Quintanilla, R. .
JOURNAL OF THERMAL STRESSES, 2011, 34 (09) :911-922
[40]   On the Logarithmic Convexity in Thermoelasticity with Microtemperatures [J].
Quintanilla, Ramon .
JOURNAL OF THERMAL STRESSES, 2013, 36 (04) :378-386