Synthesis of Ni-Rich Layered-Oxide Nanomaterials with Enhanced Li-Ion Diffusion Pathways as High-Rate Cathodes for Li-Ion Batteries

被引:49
作者
Jiang, Ming [1 ,2 ]
Zhang, Qian [2 ,4 ]
Wu, Xiaochao [2 ,5 ]
Chen, Zhiqiang [1 ,2 ]
Danilov, Dmitri L. [1 ,2 ]
Eichel, Ruediger-A [2 ,4 ]
Notten, Peter H. L. [1 ,2 ,3 ]
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] Forschungszentrum Julich, IEK 9, D-52425 Julich, Germany
[3] Univ Technol Sydney, Sydney, NSW 2007, Australia
[4] Rhein Westfal TH Aachen, D-52074 Aachen, Germany
[5] Polymer Technol Grp Eindhoven PTG E BV, Eindhoven, Netherlands
关键词
Ni-rich cathodes; lithium-ion batteries; nanobrick structure; active facets; high rate; 010 ACTIVE FACETS; ELECTROCHEMICAL PERFORMANCE; LINI0.6CO0.2MN0.2O2; CATHODE; SURFACE DEGRADATION; PERSPECTIVE; VOLTAGE; SYSTEM; ANODES; BULK;
D O I
10.1021/acsaem.0c00765
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni-rich LiNi0.6Co0.2Mn0.2O2 nanomaterials with a high percentage of exposed {010} facets have been prepared by surfactant-assisted hydrothermal synthesis followed by solid-state reaction. Characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) confirmed that the particles have enhanced the growth of nanocrystal planes in favor of Li-ion diffusion. Electrochemical tests show these cathode materials endow a large Li-ion diffusion coefficient, which leads to a superior rate capability and cyclability, suggesting these cathode materials are highly beneficial for practical application in Li-ion batteries.
引用
收藏
页码:6583 / 6590
页数:8
相关论文
共 45 条
[1]   Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation [J].
Chen, Yongxiang ;
Li, Puliang ;
Li, Yunjiao ;
Su, Qianye ;
Xue, Longlong ;
Han, Qiang ;
Cao, Guoling ;
Li, Jianguo .
JOURNAL OF MATERIALS SCIENCE, 2018, 53 (03) :2115-2126
[2]   Manganese phosphate coated Li[Ni0.6Co0.2Mn0.2]O2 cathode material: Towards superior cycling stability at elevated temperature and high voltage [J].
Chen, Zhen ;
Kim, Guk-Tae ;
Guang, Yang ;
Bresser, Dominic ;
Diemant, Thomas ;
Huang, Yizhong ;
Copley, Mark ;
Behm, Rolf Juergen ;
Passerini, Stefano ;
Shen, Zexiang .
JOURNAL OF POWER SOURCES, 2018, 402 :263-271
[3]   A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer [J].
Cho, Yonghyun ;
Oh, Pilgun ;
Cho, Jaephil .
NANO LETTERS, 2013, 13 (03) :1145-1152
[4]   Recent Advances in Designing High-Capacity Anode Nanomaterials for Li-Ion Batteries and Their Atomic-Scale Storage Mechanism Studies [J].
Cui, Qiuhong ;
Zhong, Yeteng ;
Pan, Lu ;
Zhang, Hongyun ;
Yang, Yijun ;
Liu, Dequan ;
Teng, Feng ;
Bando, Yoshio ;
Yao, Jiannian ;
Wang, Xi .
ADVANCED SCIENCE, 2018, 5 (07)
[5]   Optimized Temperature Effect of Li-Ion Diffusion with Layer Distance in Li(NixMnyCoz)O2 Cathode Materials for High Performance Li-Ion Battery [J].
Cui, Suihan ;
Wei, Yi ;
Liu, Tongchao ;
Deng, Wenjun ;
Hu, Zongxiang ;
Su, Yantao ;
Li, Hao ;
Li, Maofan ;
Guo, Hua ;
Duan, Yandong ;
Wang, Weidong ;
Rao, Mumin ;
Zheng, Jiaxin ;
Wang, Xinwei ;
Pan, Feng .
ADVANCED ENERGY MATERIALS, 2016, 6 (04)
[6]   Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery [J].
Fu, Fang ;
Xu, Gui-Liang ;
Wang, Qi ;
Deng, Ya-Ping ;
Li, Xue ;
Li, Jun-Tao ;
Huang, Ling ;
Sun, Shi-Gang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) :3860-3864
[7]   Electrochemical Properties of the LiNi0.6Co0.2Mn0.2O2 Cathode Material Modified by Lithium Tungstate under High Voltage [J].
Fu, Jiale ;
Mu, Daobin ;
Wu, Borong ;
Bi, Jiaying ;
Cui, Hui ;
Yang, Hao ;
Wu, Hanfeng ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) :19704-19711
[8]   Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries [J].
Gao, Shuang ;
Zhan, Xiaowen ;
Cheng, Yang-Tse .
JOURNAL OF POWER SOURCES, 2019, 410 :45-52
[9]   How we made the Li-ion rechargeable battery [J].
Goodenough, John B. .
NATURE ELECTRONICS, 2018, 1 (03) :204-204
[10]   Advances in In Situ Techniques for Characterization of Failure Mechanisms of Li-Ion Battery Anodes [J].
Hapuarachchi, Sashini N. S. ;
Sun, Ziqi ;
Yan, Cheng .
ADVANCED SUSTAINABLE SYSTEMS, 2018, 2 (8-9)