Surface layer formation of LiCoO2 thin film electrodes in non-aqueous electrolyte containing lithium bis(oxalate)borate

被引:30
作者
Matsui, Masaki [2 ]
Dokko, Kaoru [3 ]
Akita, Yasuhiro [1 ]
Munakata, Hirokazu [1 ]
Kanamura, Kiyoshi [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Urban Environm Sci, Dept Appl Chem, Hachioji, Tokyo 1920397, Japan
[2] Toyota Res Inst N Amer, Mat Res Dept, Ann Arbor, MI 48105 USA
[3] Yokohama Natl Univ, Grad Sch Engn, Dept Chem & Biotechnol, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
关键词
Rechargeable lithium battery; Non-aqueous electrolyte; LiBOB; Surface layer; In situ FTIR; XPS; LIBOB-BASED ELECTROLYTES; LI-ION CELLS; BINARY CARBONATES; PHASE-DIAGRAMS; BATTERIES; LIPF6; SPECTROSCOPY; TEMPERATURE; STABILITY; BEHAVIOR;
D O I
10.1016/j.jpowsour.2012.02.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPFG solution had a relatively thick surface layer containing organic species and inorganic species. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 24 条
[1]   Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications [J].
Amine, K ;
Liu, J ;
Kang, S ;
Belharouak, I ;
Hyung, Y ;
Vissers, D ;
Henriksen, G .
JOURNAL OF POWER SOURCES, 2004, 129 (01) :14-19
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J].
Cho, J ;
Kim, YJ ;
Park, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1110-A1115
[4]   Enhanced structural stability of o-LiMnO2 by sol-gel coating of Al2O3 [J].
Cho, J ;
Kim, YJ ;
Kim, TJ ;
Park, B .
CHEMISTRY OF MATERIALS, 2001, 13 (01) :18-+
[5]   Liquid-solid phase diagrams of binary carbonates for lithium batteries [J].
Ding, MS ;
Xu, K ;
Jow, TR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (05) :1688-1694
[6]   Change of conductivity with salt content, solvent composition, and temperature for electrolytes of LiPF6 in ethylene carbonate-ethyl methyl carbonate [J].
Ding, MS ;
Xu, K ;
Zhang, SS ;
Amine, K ;
Henriksen, GL ;
Jow, TR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1196-A1204
[7]   Liquid/solid phase diagrams of binary carbonates for lithium batteries part II [J].
Ding, MS ;
Xu, K ;
Zhang, SS ;
Jow, TR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :A299-A304
[8]   Vibrational spectroscopy and ab initio studies of lithium bis(oxalato) borate (LiBOB) in different solvents [J].
Holomb, Roman ;
Xu, Wu ;
Markusson, Henrik ;
Johansson, Patrik ;
Jacobsson, Per .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (40) :11467-11472
[9]  
Jaephil C., 2001, ANGEW CHEM INT EDIT, V40, P3367
[10]   ARC studies of the thermal stability of three different cathode materials:: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes [J].
Jiang, J ;
Dahn, JR .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (01) :39-43