Modes of Interaction in Binary Blends of Hydrophobic Polyethers and Imidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids

被引:9
作者
Bentley, Caitlin L. [1 ]
Chwatko, Malgorzata [1 ]
Wheatle, Bill K. [1 ]
Burkey, Aaron A. [1 ]
Helenic, Alysha [1 ]
Morales-Collazo, Oscar [1 ]
Ganesan, Venkat [1 ]
Lynd, Nathaniel A. [1 ]
Brennecke, Joan F. [1 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
TEMPERATURE PHASE-BEHAVIOR; POLY(ETHYLENE OXIDE); SEPARATION BEHAVIOR; POLYMER BLENDS; CARBON-DIOXIDE; CO2; SOLVENTS; EXTRACTION; MIXTURES; GELS;
D O I
10.1021/acs.macromol.0c01155
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Lower critical solution behavior in binary blends of hydrophobic polyethers with 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ahmim][Tf2N]) exhibited a difference in lower critical solution temperature (LCST) greater than 80 degrees C between structurally homologous poly(isopropyl glycidyl ether) (PiPGE) and poly(n-butyl glycidyl ether) (PnBGE). Replacement of the acidic hydrogen on the imidazolium ring with a methyl group (i.e., 2,3-dimethyl-1-hexyl-imidazolium bis(trifluoromethylsulfonyl)imide ([hmmim] [Tf2N])) significantly reduced the LCST of both the PnBGE/ionic liquid (IL) mixture and the PiPGE/IL mixture. Differing degrees of hydrogen bonding between the polymer and the cation cannot alone explain the observed behavior. Similar hydrogen bonding between the [hmim](+ )cation and both polymers from molecular dynamics simulations was consistent with this conclusion. However, stronger [hmim](+) cation tail/polymer alkyl side-chain interactions for PnBGE, with consequently stronger cation/anion interactions, point to solvophobic interactions as the basis for the large LCST difference between the PnBGE/[hmim][Tf2N] and PiPGE/[hmim][Tf2N] blends.
引用
收藏
页码:6519 / 6528
页数:10
相关论文
共 71 条
[1]   High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids [J].
Aki, SNVK ;
Mellein, BR ;
Saurer, EM ;
Brennecke, JF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :20355-20365
[2]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[3]   Examination of the potential of ionic liquids for gas separations [J].
Baltus, RE ;
Counce, RM ;
Culbertson, BH ;
Luo, HM ;
DePaoli, DW ;
Dai, S ;
Duckworth, DC .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :525-541
[4]   Room-Temperature Ionic Liquids and Composite Materials: Platform Technologies for CO2 Capture [J].
Bara, Jason E. ;
Camper, Dean E. ;
Gin, Douglas L. ;
Noble, Richard D. .
ACCOUNTS OF CHEMICAL RESEARCH, 2010, 43 (01) :152-159
[5]  
Barteau K.P., 2015, Poly(Glycidyl Ether)-Based Battery Electrolytes: Correlating Polymer Properties to Ion Transport
[6]   Stabilizing lithium metal using ionic liquids for long-lived batteries [J].
Basile, A. ;
Bhatt, A. I. ;
O'Mullane, A. P. .
NATURE COMMUNICATIONS, 2016, 7
[7]   CO2 capture by a task-specific ionic liquid [J].
Bates, ED ;
Mayton, RD ;
Ntai, I ;
Davis, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (06) :926-927
[8]   High-pressure phase behavior of ionic liquid/CO2 systems [J].
Blanchard, LA ;
Gu, ZY ;
Brennecke, JF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (12) :2437-2444
[9]   Encapsulation of Ionic Liquids within Polymer Shells via Vapor Phase Deposition [J].
Bradley, Laura C. ;
Gupta, Malancha .
LANGMUIR, 2012, 28 (27) :10276-10280
[10]   Comparison of Ionic Liquids to Conventional Organic Solvents for Extraction of Aromatics from Aliphatics [J].
Canales, Roberto I. ;
Brennecke, Joan F. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2016, 61 (05) :1685-1699