Cauchy problem for fractional diffusion equations

被引:338
作者
Eidelman, SD [1 ]
Kochubei, AN [1 ]
机构
[1] Natl Acad Sci Ukraine, Math Inst, UA-01601 Kiev, Ukraine
关键词
fractional diffusion equation; fractional derivative; Fox's H-function; fundamental solution; Levi method;
D O I
10.1016/j.jde.2003.12.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an evolution equation with the regularized fractional derivative of an order alpha epsilon (0, 1) with respect to the time variable, and a uniformly elliptic operator with variable coefficients acting in the spatial variables. Such equations describe diffusion on inhomogeneous fractals. A fundamental solution of the Cauchy problem is constructed and investigated. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:211 / 255
页数:45
相关论文
共 27 条
[1]   Spectral analysis of fractional kinetic equations with random data [J].
Anh, VV ;
Leonenko, NN .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) :1349-1387
[2]  
[Anonymous], 1992, IDEAS METHODS MATH P
[3]  
Baeumer B., 2001, FRACT CALCU APPL ANA, V4, P481
[4]  
Bazhlekova E, 2001, THESIS TU EINDHOVEN
[5]  
BAZHLEKOVA E, 1998, FRACT CALC APPL ANAL, V1, P255
[6]  
Braaksma B.L.J., 1962, Compos. Math, V15, P239
[7]  
Dzherbashyan MM, 1968, Izv Akad Nauk Arm SSR, Ser Mat, V3, P3
[8]  
Eidelman S.D., 1969, PARABOLIC SYSTEMS, P469
[9]  
El-Sayed AM, 1995, J FRACT CALC, V7, P89
[10]  
Erdelyi A, 1955, HIGHER TRANSCENDENTA, V3