Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex:: physiology and anatomy of interlaminar signalling within a cortical column

被引:322
作者
Feldmeyer, D
Lübke, J
Silver, RA
Sakmann, B
机构
[1] Max Planck Inst Med Res, Abt Zellphysiol, D-69120 Heidelberg, Germany
[2] Univ Freiburg, Inst Anat, D-79104 Freiburg, Germany
[3] UCL, Dept Physiol, London WC1E 6BT, England
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2002年 / 538卷 / 03期
关键词
D O I
10.1113/jphysiol.2001.012959
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Whole-cell voltage recordings were obtained from 64 synaptically coupled excitatory layer 4 (L4) spiny neurones and L2/3 pyramidal cells in acute slices of the somatosensory cortex ('barrel' cortex) of 17- to 23-days-old rats. Single action potentials (APs) in the L4 spiny neurone evoked single unitary EPSPs in the L2/3 pyramidal cell with a peak amplitude of 0.7 +/- 0.6 mV. The average latency was 2.1 +/- 0.6 ms, the rise time was 0.8 +/- 0.3 ms and the decay time constant was 12.7 +/- 3.5 ms. The percentage of failures of an AP in a L4 spiny neurone to evoke a unitary EPSP in the L2/3 pyramidal cell was 4.9 +/- 8.8 % and the coefficient of variation (c.v.) of the unitary EPSP amplitude was 0.27 +/- 0.13. Both c.v. and percentage of failures decreased with increased average EPSP amplitude. Postsynaptic glutamate receptors (GluRs) in L2/3 pyramidal cells were of the N-methyl-D-aspartate (NMDA) receptor (NMDAR) and the non-NMDAR type. At -60 mV in the presence of extracellular Mg2+ (1 mm), 29 +/- 15 % of the EPSP voltage-time integral was blocked by NMDAR antagonists. In 0 Mg2+, the NMDAR/AMPAR ratio of the EPSC was 0.50 +/- 0.29, about half the value obtained for L4 spiny neurone connections. Burst stimulation of L4 spiny neurones showed that EPSPs in L2/3 pyramidal cells depressed over a wide range of frequencies (1-100 s(-1)). However, at higher frequencies (30 s(-1)) EPSP summation overcame synaptic depression so that the summed EPSP was larger than the first EPSP amplitude in the train. The number of putative synaptic contacts established by the axonal collaterals of the L4 projection neurone with the target neurone in layer 2/3 varied between 4 and 5, with an average of 4.5 +/- 0.5 (n = 13 pairs). Synapses were established on basal dendrites of the pyramidal cell. Their mean geometric distance from the pyramidal cell soma was 67 +/- 34 mum (range, 16-196 mum). The results suggest that each connected L4 spiny neurone produces a weak but reliable EPSP in the pyramidal cell. Therefore transmission of signals to layer 2/3 is likely to have a high threshold requiring simultaneous activation of many L4 neurons, implying that L4 spiny neurone to L2/3 pyramidal cell synapses act as a gate for the lateral spread of excitation in layer 2/3.
引用
收藏
页码:803 / 822
页数:20
相关论文
共 68 条
[1]   THALAMOCORTICAL RESPONSES OF MOUSE SOMATOSENSORY (BARREL) CORTEX INVITRO [J].
AGMON, A ;
CONNORS, BW .
NEUROSCIENCE, 1991, 41 (2-3) :365-379
[2]   Transformation from temporal to rate coding in a somatosensory thalamocortical pathway [J].
Ahissar, E ;
Sosnik, R ;
Haidarliu, S .
NATURE, 2000, 406 (6793) :302-306
[3]   POLYNEURONAL INNERVATION OF SPINY STELLATE NEURONS IN CAT VISUAL-CORTEX [J].
AHMED, B ;
ANDERSON, JC ;
DOUGLAS, RJ ;
MARTIN, KAC ;
NELSON, JC .
JOURNAL OF COMPARATIVE NEUROLOGY, 1994, 341 (01) :39-49
[4]   FLOW OF EXCITATION WITHIN RAT BARREL CORTEX ON STRIKING A SINGLE VIBRISSA [J].
ARMSTRONGJAMES, M ;
FOX, K ;
DASGUPTA, A .
JOURNAL OF NEUROPHYSIOLOGY, 1992, 68 (04) :1345-1358
[5]   SPATIOTEMPORAL CONVERGENCE AND DIVERGENCE IN THE RAT S1 BARREL CORTEX [J].
ARMSTRONGJAMES, M ;
FOX, K .
JOURNAL OF COMPARATIVE NEUROLOGY, 1987, 263 (02) :265-281
[6]  
BRECHT M, 2000, P 20 ANN GEN M SOC N
[7]   Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex [J].
Briggs, F ;
Callaway, EM .
JOURNAL OF NEUROSCIENCE, 2001, 21 (10) :3600-3608
[8]   Cortical columnar processing in the rat whisker-to-barrel system [J].
Brumberg, JC ;
Pinto, DJ ;
Simons, DJ .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (04) :1808-1817
[9]   Local circuits in primary visual cortex of the macaque monkey [J].
Callaway, EM .
ANNUAL REVIEW OF NEUROSCIENCE, 1998, 21 :47-74
[10]   DISTRIBUTION OF SOMATIC SENSORY AND ACTIVE-MOVEMENT NEURONAL DISCHARGE PROPERTIES IN THE ML-SL CORTICAL BORDER AREA IN THE RAT [J].
CHAPIN, JK ;
WOODWARD, DJ .
EXPERIMENTAL NEUROLOGY, 1986, 91 (03) :502-523