Elementary Excitations in Gapped Quantum Spin Systems

被引:65
|
作者
Haegeman, Jutho [1 ]
Michalakis, Spyridon [2 ]
Nachtergaele, Bruno [3 ]
Osborne, Tobias J. [4 ]
Schuch, Norbert [5 ]
Verstraete, Frank [1 ,6 ]
机构
[1] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[4] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[5] Rhein Westfal TH Aachen, Inst Quanteninformat, D-52056 Aachen, Germany
[6] Univ Vienna, Vienna Ctr Quantum Sci, A-1090 Vienna, Austria
基金
美国国家科学基金会;
关键词
RENORMALIZATION-GROUP; LOCAL OBSERVABLES; CHARGED STATES; FIELD THEORY; PARTICLES; SECTORS; CHAINS; MODELS;
D O I
10.1103/PhysRevLett.111.080401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For quantum lattice systems with local interactions, the Lieb-Robinson bound serves as an alternative for the strict causality of relativistic systems and allows the proof of many interesting results, in particular, when the energy spectrum exhibits an energy gap. In this Letter, we show that for translation invariant systems, simultaneous eigenstates of energy and momentum with an eigenvalue that is separated from the rest of the spectrum in that momentum sector can be arbitrarily well approximated by building a momentum superposition of a local operator acting on the ground state. The error satisfies an exponential bound in the size of the support of the local operator, with a rate determined by the gap below and above the targeted eigenvalue. We show this explicitly for the Affleck-Kennedy-Lieb-Tasaki model and discuss generalizations and applications of our result.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Entanglement and elementary excitations in quantum spin chain
    Li, Bo
    Wang, Yan Shen
    PHYSICA B-CONDENSED MATTER, 2011, 406 (11) : 2308 - 2313
  • [2] Magnon decay in gapped quantum spin systems
    Kolezhuk, A
    Sachdev, S
    PHYSICAL REVIEW LETTERS, 2006, 96 (08)
  • [3] Asymptotic Observables in Gapped Quantum Spin Systems
    Wojciech Dybalski
    Communications in Mathematical Physics, 2018, 357 : 231 - 248
  • [4] Asymptotic Observables in Gapped Quantum Spin Systems
    Dybalski, Wojciech
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (01) : 231 - 248
  • [5] ELEMENTARY EXCITATIONS AND SPIN DYNAMICS IN NANOWIRE QUANTUM MAGNETS
    Sakai, Toru
    Tonegawa, Takashi
    Okamoto, Kiyomi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (09): : 1467 - 1476
  • [6] Localized and propagating excitations in gapped phases of spin systems with bond disorder
    Utesov, O. I.
    Sizanov, A. V.
    Syromyatnikov, A. V.
    PHYSICAL REVIEW B, 2014, 90 (15):
  • [7] Topological Excitations in Quantum Spin Systems
    Chaudhury, Ranjan
    Paul, Samir K.
    ADVANCES IN CONDENSED MATTER PHYSICS, 2013, 2013
  • [8] Approximating the ground state of gapped quantum spin systems
    Hamza, Eman
    Michalakis, Spyridon
    Nachtergaele, Bruno
    Sims, Robert
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (09)
  • [9] Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit
    Kenzelmann, M
    Cowley, RA
    Buyers, WJL
    Coldea, R
    Enderle, M
    McMorrow, DF
    PHYSICAL REVIEW B, 2002, 66 (17): : 1 - 14
  • [10] Critical temperature and low-energy excitations in gapped spin systems with defects
    Timkovskii, F. D.
    Syromyatnikov, A., V
    PHYSICAL REVIEW B, 2021, 103 (02)