Elementary Excitations in Gapped Quantum Spin Systems

被引:67
作者
Haegeman, Jutho [1 ]
Michalakis, Spyridon [2 ]
Nachtergaele, Bruno [3 ]
Osborne, Tobias J. [4 ]
Schuch, Norbert [5 ]
Verstraete, Frank [1 ,6 ]
机构
[1] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[4] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[5] Rhein Westfal TH Aachen, Inst Quanteninformat, D-52056 Aachen, Germany
[6] Univ Vienna, Vienna Ctr Quantum Sci, A-1090 Vienna, Austria
基金
美国国家科学基金会;
关键词
RENORMALIZATION-GROUP; LOCAL OBSERVABLES; CHARGED STATES; FIELD THEORY; PARTICLES; SECTORS; CHAINS; MODELS;
D O I
10.1103/PhysRevLett.111.080401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For quantum lattice systems with local interactions, the Lieb-Robinson bound serves as an alternative for the strict causality of relativistic systems and allows the proof of many interesting results, in particular, when the energy spectrum exhibits an energy gap. In this Letter, we show that for translation invariant systems, simultaneous eigenstates of energy and momentum with an eigenvalue that is separated from the rest of the spectrum in that momentum sector can be arbitrarily well approximated by building a momentum superposition of a local operator acting on the ground state. The error satisfies an exponential bound in the size of the support of the local operator, with a rate determined by the gap below and above the targeted eigenvalue. We show this explicitly for the Affleck-Kennedy-Lieb-Tasaki model and discuss generalizations and applications of our result.
引用
收藏
页数:5
相关论文
共 43 条
[1]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[2]   EXTENDED HEISENBERG MODELS OF ANTIFERROMAGNETISM - ANALOGIES TO THE FRACTIONAL QUANTUM HALL-EFFECT [J].
AROVAS, DP ;
AUERBACH, A ;
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1988, 60 (06) :531-534
[3]   CHARGED-PARTICLES IN ZETA-2 GAUGE-THEORIES [J].
BARATA, JCA ;
FREDENHAGEN, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (03) :403-417
[4]   ELECTRICALLY AND MAGNETICALLY CHARGED STATES AND PARTICLES IN THE 2+1-DIMENSIONAL Z(N)-HIGGS GAUGE-MODEL [J].
BARATA, JCA ;
NILL, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (01) :27-86
[5]  
Barata JCA, 1998, COMMUN MATH PHYS, V191, P409, DOI 10.1007/s002200050273
[6]   Excitations of anisotropic spin-1 chains with matrix product ground state [J].
Bartel, E ;
Schadschneider, A ;
Zittartz, J .
EUROPEAN PHYSICAL JOURNAL B, 2003, 31 (02) :209-216
[7]   Properties of liquid helium II [J].
Bijl, A ;
De Boer, J ;
Michels, A .
PHYSICA, 1941, 8 :655-675
[8]  
Bratteli O., 1997, Operator algebras and quantum statistical mechanics, VII
[9]   LOCALITY AND THE STRUCTURE OF PARTICLE STATES [J].
BUCHHOLZ, D ;
FREDENHAGEN, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (01) :1-54
[10]   Entanglement perturbation theory for the elementary excitation in one dimension [J].
Chung, Sung Gong ;
Wang, Lihua .
PHYSICS LETTERS A, 2009, 373 (26) :2277-2280