Delayed and rushed motions through time change

被引:15
作者
Capitanelli, Raffaela [1 ]
D'Ovidio, Mirko [1 ]
机构
[1] Sapienza Univ Rome, Dept Basic & Appl Sci Engn, Via A Scarpa 16, I-00161 Rome, Italy
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2020年 / 17卷 / 01期
关键词
Time changes; non-local operators; time-fractional equations; space-fractional equations; fractional diffusions; anomalous diffusions; FRACTIONAL DIFFUSION-EQUATIONS; BROWNIAN-MOTION; HITTING-TIMES; PROBABILITY; GAMMA; LAW;
D O I
10.30757/ALEA.v17-08
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a definition of delayed and rushed processes in terms of lifetimes of base processes and time-changed base processes. Then, we consider time changes given by subordinators and their inverse processes. Our analysis shows that, quite surprisingly, time-changing with inverse subordinators does not necessarily imply delay of the base process. Moreover, time-changing with subordinators does not necessarily imply rushed base process.
引用
收藏
页码:183 / 204
页数:22
相关论文
共 45 条
[1]  
[Anonymous], 1968, PURE APPL MATH
[2]  
[Anonymous], 1994, DE GRUY MAT
[3]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[4]  
Bazhlekova E. G., 2000, FRACTIONAL CALCULUS, V3, P213
[5]   On fractional tempered stable processes and their governing differential equations [J].
Beghin, Luisa .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :29-39
[6]   A ONE-PARAMETER FAMILY OF PICK FUNCTIONS DEFINED BY THE GAMMA FUNCTION AND RELATED TO THE VOLUME OF THE UNIT BALL IN n-SPACE [J].
Berg, Christian ;
Pedersen, Henrik L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) :2121-2132
[7]  
BERTOIN J., 1999, LECT NOTES MATH, V1717, P1, DOI 10.1007/978-3-540-48115-7_1
[8]  
Bhattacharya R. N., 2009, CLASSICS APPL MATH, V61
[9]   HEAT KERNEL ESTIMATES FOR THE FRACTIONAL LAPLACIAN WITH DIRICHLET CONDITIONS [J].
Bogdan, Krzysztof ;
Grzywny, Tomasz ;
Ryznar, Michal .
ANNALS OF PROBABILITY, 2010, 38 (05) :1901-1923
[10]   Traps for reflected Brownian motion [J].
Burdzy, K ;
Chen, ZQ ;
Marshall, DE .
MATHEMATISCHE ZEITSCHRIFT, 2006, 252 (01) :103-132