REPRESENTATIONS OF THE EXCEPTIONAL LIE SUPERALGEBRA E(3,6) III: CLASSIFICATION OF SINGULAR VECTORS

被引:8
作者
Kac, Victor G. [1 ]
Rudakov, Alexei [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] NTNU, Inst Matemat Fag, N-7491 Trondheim, Norway
关键词
Irreducible representation; linearly compact Lie superalgebra; generalized Verma modules; singular vector; Standard Model;
D O I
10.1142/S0219498805001095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue the study of irreducible representations of the exceptional Lie superalgebra E(3, 6). This is one of the two simple infinite-dimensional Lie superalgebras of vector fields which have a Lie algebra sl(3) x sl(2) x gl(1) as the zero degree component of its consistent Z-grading. We provide the classification of the singular vectors in the degenerate Verma modules over E(3, 6), completing thereby the classification and construction of all irreducible E(3, 6)-modules that are L-0-locally finite.
引用
收藏
页码:15 / 57
页数:43
相关论文
共 4 条
[1]   Structure of some Z-graded Lie superalgebras of vector fields [J].
Cheng, SJ ;
Kac, V .
TRANSFORMATION GROUPS, 1999, 4 (2-3) :219-272
[2]   Classification of infinite-dimensional simple linearly compact Lie superalgebras [J].
Kac, VG .
ADVANCES IN MATHEMATICS, 1998, 139 (01) :1-55
[3]  
Kac VG, 2002, TRANSFORM GROUPS, V7, P67
[4]   Representations of the exceptional Lie superalgebra E(3,6) II:: Four series of degenerate modules [J].
Kac, VG ;
Rudakov, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 222 (03) :611-661