On conjugacy growth of linear groups

被引:9
作者
Breuillard, Emmanuel [1 ]
Cornulier, Yves [1 ]
Lubotzky, Alexander [2 ]
Meiri, Chen [2 ]
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
[2] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
UNIFORM EXPONENTIAL-GROWTH; ZARISKI-DENSE SUBGROUPS; STRONG APPROXIMATION;
D O I
10.1017/S030500411200059X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the conjugacy growth of finitely generated linear groups. We show that finitely generated non-virtually-solvable subgroups of GL(d) have uniform exponential conjugacy growth and in fact that the number of distinct polynomials arising as characteristic polynomials of the elements of the ball of radius n for the word metric has exponential growth rate bounded away from 0 in terms of the dimension d only.
引用
收藏
页码:261 / 277
页数:17
相关论文
共 30 条
[1]  
[Anonymous], 2012, London Mathematical Society Lecture Note Series
[2]  
[Anonymous], PREPRINT
[3]  
[Anonymous], 1966, Inst. Hautes Etudes Sci. Publ. Math., P255
[4]   Uniform independence in linear groups [J].
Breuillard, E. ;
Gelander, T. .
INVENTIONES MATHEMATICAE, 2008, 173 (02) :225-263
[5]  
Breuillard E., ARXIV08041395
[6]  
Breuillard E, 2007, PURE APPL MATH Q, V3, P949
[7]   A height gap theorem for finite subsets of GLd((Q)over-bar) and nonamenable subgroups [J].
Breuillard, Emmanuel .
ANNALS OF MATHEMATICS, 2011, 174 (02) :1057-1110
[8]   Approximate Subgroups of Linear Groups [J].
Breuillard, Emmanuel ;
Green, Ben ;
Tao, Terence .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (04) :774-819
[9]   ON CONJUGACY GROWTH FOR SOLVABLE GROUPS [J].
Breuillard, Emmanuel ;
de Cornulier, Yves .
ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (01) :389-395
[10]   LINEAR APPROXIMATE GROUPS [J].
Breuillard, Emmanuel ;
Green, Ben ;
Tao, Terence .
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2010, 17 :57-67