TENSOR ENSEMBLE LEARNING FOR MULTIDIMENSIONAL DATA

被引:0
|
作者
Kisil, Ilia [1 ]
Moniri, Ahmad [1 ]
Mandic, Danilo P. [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
来源
2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018) | 2018年
基金
英国工程与自然科学研究理事会;
关键词
Tensor Decomposition; Multidimensional Data; Ensemble Learning; Classification; Bagging; DECOMPOSITIONS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In big data applications, classical ensemble learning is typically infeasible on the raw input data and dimensionality reduction techniques are necessary. To this end, novel framework that generalises classic flat-view ensemble learning to multidimensional tensor-valued data is introduced. This is achieved by virtue of tensor decompositions, whereby the proposed method, referred to as tensor ensemble learning (TEL), decomposes every input data sample into multiple factors which allows for a flexibility in the choice of multiple learning algorithms in order to improve test performance. The TEL framework is shown to naturally compress multidimensional data in order to take advantage of the inherent multi-way data structure and exploit the benefit of ensemble learning. The proposed framework is verified through the application of Higher Order Singular Value Decomposition (HOSVD) to the ETH-80 dataset and is shown to outperform the classical ensemble learning approach of bootstrap aggregating.
引用
收藏
页码:1358 / 1362
页数:5
相关论文
共 50 条
  • [41] A Survey on Ensemble Learning for Data Stream Classification
    Gomes, Heitor Murilo
    Barddal, Jean Paul
    Enembreck, Fabricio
    Bifet, Albert
    ACM COMPUTING SURVEYS, 2017, 50 (02)
  • [42] Multicriteria Classifier Ensemble Learning for Imbalanced Data
    Wegier, Weronika
    Koziarski, Michal
    Wozniak, Micha
    IEEE ACCESS, 2022, 10 : 16807 - 16818
  • [43] An Improved Ensemble Learning for Imbalanced Data Classification
    Yuan, Zhengwu
    Zhao, Pu
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 408 - 411
  • [44] Ensemble learning for data stream analysis: A survey
    Krawczyk, Bartosz
    Minku, Leandro L.
    Gama, Joao
    Stefanowski, Jerzy
    Wozniak, Michal
    INFORMATION FUSION, 2017, 37 : 132 - 156
  • [45] Droplet Ensemble Learning on Drifting Data Streams
    Loeffel, Pierre-Xavier
    Bifet, Albert
    Marsala, Christophe
    Detyniecki, Marcin
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVI, IDA 2017, 2017, 10584 : 210 - 222
  • [46] Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
    Webb, GI
    Zheng, ZJ
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2004, 16 (08) : 980 - 991
  • [47] Learning from Low Rank Tensor Data: A Random Tensor Theory Perspective
    Seddik, Mohamed El Amine
    Tiomoko, Malik
    Decurninge, Alexis
    Panov, Maxim
    Guillaud, Maxime
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1858 - 1867
  • [48] Learning to Grasp Objects based on Ensemble Learning Combining Simulation Data and Real Data
    Na, Yong-Ho
    Jo, HyunJun
    Song, Jae-Bok
    2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2017, : 1030 - 1034
  • [49] Ensemble learning-based IDS for sensors telemetry data in IoT networks
    Naz, Naila
    Khan, Muazzam A.
    Alsuhibany, Suliman A.
    Diyan, Muhammad
    Tan, Zhiyuan
    Khan, Muhammad Almas
    Ahmad, Jawad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (10) : 10550 - 10580
  • [50] ENSEMBLE LEARNING ALGORITHMS
    Turan, Selin Ceren
    Cengiz, Mehmet Ali
    JOURNAL OF SCIENCE AND ARTS, 2022, (02) : 459 - 470