TENSOR ENSEMBLE LEARNING FOR MULTIDIMENSIONAL DATA

被引:0
|
作者
Kisil, Ilia [1 ]
Moniri, Ahmad [1 ]
Mandic, Danilo P. [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
来源
2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018) | 2018年
基金
英国工程与自然科学研究理事会;
关键词
Tensor Decomposition; Multidimensional Data; Ensemble Learning; Classification; Bagging; DECOMPOSITIONS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In big data applications, classical ensemble learning is typically infeasible on the raw input data and dimensionality reduction techniques are necessary. To this end, novel framework that generalises classic flat-view ensemble learning to multidimensional tensor-valued data is introduced. This is achieved by virtue of tensor decompositions, whereby the proposed method, referred to as tensor ensemble learning (TEL), decomposes every input data sample into multiple factors which allows for a flexibility in the choice of multiple learning algorithms in order to improve test performance. The TEL framework is shown to naturally compress multidimensional data in order to take advantage of the inherent multi-way data structure and exploit the benefit of ensemble learning. The proposed framework is verified through the application of Higher Order Singular Value Decomposition (HOSVD) to the ETH-80 dataset and is shown to outperform the classical ensemble learning approach of bootstrap aggregating.
引用
收藏
页码:1358 / 1362
页数:5
相关论文
共 50 条
  • [31] Big data classification of learning behaviour based on data reduction and ensemble learning
    Wang, Taotao
    Wu, Xiaoxuan
    INTERNATIONAL JOURNAL OF CONTINUING ENGINEERING EDUCATION AND LIFE-LONG LEARNING, 2023, 33 (4-5) : 496 - 510
  • [32] Reinforcement Online Active Learning Ensemble for Drifting Imbalanced Data Streams
    Zhang, Hang
    Liu, Weike
    Liu, Qingbao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3971 - 3983
  • [33] Genetic Programming with Interval Functions and Ensemble Learning for Classification with Incomplete Data
    Cao Truong Tran
    Zhang, Mengjie
    Xue, Bing
    Andreae, Peter
    AI 2018: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11320 : 577 - 589
  • [34] A synthetic neighborhood generation based ensemble learning for the imbalanced data classification
    Zhi Chen
    Tao Lin
    Xin Xia
    Hongyan Xu
    Sha Ding
    Applied Intelligence, 2018, 48 : 2441 - 2457
  • [35] CLUSTERING-BASED SUBSET ENSEMBLE LEARNING METHOD FOR IMBALANCED DATA
    Hu, Xiao-Sheng
    Zhang, Run-Jing
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 35 - 39
  • [36] A synthetic neighborhood generation based ensemble learning for the imbalanced data classification
    Chen, Zhi
    Lin, Tao
    Xia, Xin
    Xu, Hongyan
    Ding, Sha
    APPLIED INTELLIGENCE, 2018, 48 (08) : 2441 - 2457
  • [37] Machine Learning and Deep Learning for Loan Prediction in Banking: Exploring Ensemble Methods and Data Balancing
    Sayed, Eslam Hussein
    Alabrah, Amerah
    Rahouma, Kamel Hussein
    Zohaib, Muhammad
    Badry, Rasha M.
    IEEE ACCESS, 2024, 12 : 193997 - 194019
  • [38] Imbalanced Learning of Fault Data Combined with Cloud Model and Ensemble Classification
    Ma S.
    Zhao R.
    Wu Y.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2023, 43 (06): : 1114 - 1120and1243
  • [39] Ensemble learning based predictive modelling on a highly imbalanced multiclass data
    Vasti, Manka
    Dev, Amita
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (08) : 2141 - 2164
  • [40] Strength of Stacking Technique of Ensemble Learning in Rockburst Prediction with Imbalanced Data: Comparison of Eight Single and Ensemble Models
    Yin, Xin
    Liu, Quansheng
    Pan, Yucong
    Huang, Xing
    Wu, Jian
    Wang, Xinyu
    NATURAL RESOURCES RESEARCH, 2021, 30 (02) : 1795 - 1815