Generalized propensity scores for multiple continuous treatment variables

被引:16
作者
Egger, Peter H. [1 ,2 ,3 ,4 ,5 ]
von Ehrlich, Maximilian [1 ,3 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] CEPR, Washington, DC USA
[3] CESifo, Munich, Germany
[4] Ifo, Munich, Germany
[5] WIFO, Vienna, Austria
关键词
Generalized propensity score estimation; Multiple treatments; Continuous endogenous treatments;
D O I
10.1016/j.econlet.2013.01.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper illustrates that the generalized propensity score method can easily be applied with multiple continuous endogenous treatment variables. Consistency proofs carry over straightforwardly to this general case, and the approach is shown to work well in finite samples with various data-generating processes and up to five continuous endogenous treatment variables. (C) 2013 Published by Elsevier B.V.
引用
收藏
页码:32 / 34
页数:3
相关论文
共 5 条
[1]  
Hirano K., 2004, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, P73, DOI DOI 10.1002/0470090456.CH7
[2]   Causal inference with general treatment regimes: Generalizing the propensity score [J].
Imai, K ;
van Dyk, DA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :854-866
[3]   The role of the propensity score in estimating dose-response functions [J].
Imbens, GW .
BIOMETRIKA, 2000, 87 (03) :706-710
[4]  
Lechner M., 2001, ECONOMETRIC EVALUATI, P43, DOI DOI 10.1007/978-3-642-57615-7_3
[5]   THE CENTRAL ROLE OF THE PROPENSITY SCORE IN OBSERVATIONAL STUDIES FOR CAUSAL EFFECTS [J].
ROSENBAUM, PR ;
RUBIN, DB .
BIOMETRIKA, 1983, 70 (01) :41-55