Geodesics, distance, and the CAT(0) property for the manifold of Riemannian metrics

被引:13
作者
Clarke, Brian [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Manifold of metrics; L-2; metric; Completion; Nonpositive curvature; CAT(0); SPACES; GEOMETRY; MAPS;
D O I
10.1007/s00209-012-0996-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a fixed closed manifold M, we exhibit an explicit formula for the distance function of the canonical L (2) Riemannian metric on the manifold of all smooth Riemannian metrics on M. Additionally, we examine the (metric) completion of the manifold of metrics with respect to the L (2) metric and show that there exists a unique minimal path between any two points. This path is also given explicitly. As an application of these formulas, we show that the metric completion of the manifold of metrics is a CAT(0) space.
引用
收藏
页码:55 / 93
页数:39
相关论文
共 34 条
[1]  
Anderson M., 1992, GEOM FUNCT ANAL, V2, P29
[2]  
[Anonymous], 2008, EINSTEIN MANIFOLDS
[3]  
[Anonymous], 1995, GRADUATE TEXTS MATH
[4]  
BOURGUIGNON JP, 1975, COMPOS MATH, V30, P1
[5]  
Bridson M. R., 1999, FUNDAMENTAL PRINCIPL, V319
[8]  
Coddington E. A., 1955, THEORY ORDINARY DIFF
[9]  
Ebin D.G., 1970, P S PURE MATH, P11, DOI DOI 10.1090/PSPUM/015/0267604
[10]  
FREED DS, 1989, MICH MATH J, V36, P323