Chopper: Partitioning Models into 3D-Printable Parts

被引:183
作者
Luo, Linjie [1 ,2 ]
Baran, Ilya [3 ]
Rusinkiewicz, Szymon [1 ]
Matusik, Wojciech
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Disney Res Boston, Boston, MA USA
[3] Disney Res Zurich, Zurich, Switzerland
来源
ACM TRANSACTIONS ON GRAPHICS | 2012年 / 31卷 / 06期
基金
美国国家科学基金会;
关键词
3D printing; mesh segmentation and decomposition; PACKING; ORIENTATION; SQUARE;
D O I
10.1145/2366145.2366148
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a framework, called Chopper, to decompose a large 3D object into smaller parts so that each part fits into the printing volume. These parts can then be assembled to form the original object. We formulate a number of desirable criteria for the partition, including assemblability, having few components, unobtrusiveness of the seams, and structural soundness. Chopper optimizes these criteria and generates a partition either automatically or with user guidance. Our prototype outputs the final decomposed parts with customized connectors on the interfaces. We demonstrate the effectiveness of Chopper on a variety of non-trivial real-world objects.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Halloysite reinforced 3D-printable geopolymers [J].
Ranjbar, Navid ;
Kuenzel, Carsten ;
Gundlach, Carsten ;
Kempen, Paul ;
Mehrali, Mehdi .
CEMENT & CONCRETE COMPOSITES, 2023, 136
[2]   A 3D-printable modular robotic gripper [J].
Matos, Pedro ;
Neto, Pedro .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 126 (1-2) :845-855
[3]   Electrostatic Dissipation in 3D-Printable Silicone [J].
Armas, Jeremy A. ;
Ford, Michael J. ;
Foster, Kenton P. ;
Hall, Terence ;
Loeb, Colin K. ;
Schmidt, Spencer ;
Williams, Stanley F. ;
Baron, Kathlyn L. ;
Perez, Lemuel X. Perez ;
Xie, Fangyou ;
Bryson, Taylor M. ;
Lenhardt, Jeremy M. .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (41) :56041-56050
[4]   3D-printable colloidal photonic crystals [J].
Liao, Junlong ;
Ye, Changqing ;
Guo, Jie ;
Garciamendez-Mijares, Carlos Ezio ;
Agrawal, Prajwal ;
Kuang, Xiao ;
Japo, Julia Olga ;
Wang, Zixuan ;
Mu, Xuan ;
Li, Wanlu ;
Ching, Terry ;
Mille, Luis Santiago ;
Zhu, Cun ;
Zhang, Xingcai ;
Gu, Zhongze ;
Zhang, Yu Shrike .
MATERIALS TODAY, 2022, 56 :29-41
[5]   A 3D-printable modular robotic gripper [J].
Pedro Matos ;
Pedro Neto .
The International Journal of Advanced Manufacturing Technology, 2023, 126 :845-855
[6]   3D-printable colloidal photonic crystals [J].
Liao, Junlong ;
Ye, Changqing ;
Guo, Jie ;
Garciamendez-Mijares, Carlos Ezio ;
Agrawal, Prajwal ;
Kuang, Xiao ;
Japo, Julia Olga ;
Wang, Zixuan ;
Mu, Xuan ;
Li, Wanlu ;
Ching, Terry ;
Mille, Luis Santiago ;
Zhu, Cun ;
Zhang, Xingcai ;
Gu, Zhongze ;
Zhang, Yu Shrike .
MATERIALS TODAY, 2022, 56 :29-41
[7]   MRI Compatible, Customizable, and 3D-Printable Microdrive for Neuroscience Research [J].
Baeg, Eunha ;
Doudlah, Raymond ;
Swader, Robert ;
Lee, Hyowon ;
Han, Minjun ;
Kim, Seong-Gi ;
Rosenberg, Ari ;
Kim, Byounghoon .
ENEURO, 2021, 8 (02) :1-13
[8]   TouchTerrain: A simple web-tool for creating 3D-printable topographic models [J].
Hasiuk, Franciszek J. ;
Harding, Chris ;
Renner, Alex Raymond ;
Winer, Eliot .
COMPUTERS & GEOSCIENCES, 2017, 109 :25-31
[9]   AutoConnect: Computational Design of 3D-Printable Connectors [J].
Koyama, Yuki ;
Sueda, Shinjiro ;
Steinhardt, Emma ;
Igarashi, Takeo ;
Shamir, Ariel ;
Matusile, Wojciech .
ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06)
[10]   Reprogrammable, Sustainable, and 3D-Printable Cellulose Hydroplastic [J].
Koh, J. Justin ;
Koh, Xue Qi ;
Chee, Jing Yee ;
Chakraborty, Souvik ;
Tee, Si Yin ;
Zhang, Danwei ;
Lai, Szu Cheng ;
Yeo, Jayven Chee Chuan ;
Soh, Jia Wen Jaslin ;
Li, Peiyu ;
Tan, Swee Ching ;
Thitsartarn, Warintorn ;
He, Chaobin .
ADVANCED SCIENCE, 2024, 11 (29)