Plasma assisted dry reforming of methanol for clean syngas production and high-efficiency CO2 conversion

被引:66
作者
Zhang, Hao [1 ,2 ]
Li, Xiaodong [2 ]
Zhu, Fengsen [2 ]
Cen, Kefa [2 ]
Du, Changming [3 ]
Tu, Xin [4 ]
机构
[1] Zhejiang Univ Technol, Coll Mech Engn, Inst Energy & Power Engn, Hangzhou 310014, Zhejiang, Peoples R China
[2] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[4] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Rotating gliding arc (RGA); Dry reforming of methanol; Syngas production; CO2; conversion; PARTIAL OXIDATION; DISCHARGE; HYDROGEN; DECOMPOSITION; TEMPERATURE; CATALYSTS; PERFORMANCE; REACTOR;
D O I
10.1016/j.cej.2016.10.104
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Herein, the CO2 reforming of methanol, or can be called dry reforming of methanol (DRM), was investigated for the first time using a rotating gliding arc plasma. The effect of input CH3OH concentration on the reaction performance of the DRM process has been investigated. Optical emission spectroscopy (OES) has been used to give insights into the formation of reactive species in the plasma chemical reactions. In addition, the possible reaction mechanisms of the plasma DRM process have been discussed. The plasma assisted DRM has been demonstrated to be a promising route for clean syngas production and high efficiency CO2 conversion. This process provided a significantly higher efficiency for CO2 conversion compared to other plasma technologies, while maintaining a CO2 flow rate (or processing capacity) of one or several orders of magnitude higher. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 38 条
[1]   Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study [J].
Aerts, Robby ;
Somers, Wesley ;
Bogaerts, Annemie .
CHEMSUSCHEM, 2015, 8 (04) :702-716
[2]  
Al-Baghdadi MARS, 2000, INT J HYDROGEN ENERG, V25, P1005
[3]   Hydrogen production from methanol over combustion-synthesized noble metal/ceria catalysts [J].
Avgouropoulos, George ;
Papavasiliou, Joan ;
Ioannides, Theophilos .
CHEMICAL ENGINEERING JOURNAL, 2009, 154 (1-3) :274-280
[4]   Factors influencing the decomposition of CO2 in AC fan-type plasma reactors:: Frequency, waveform, and concentration effects [J].
Brock, SL ;
Shimojo, T ;
Marquez, M ;
Marun, C ;
Suib, SL ;
Matsumoto, H ;
Hayashi, Y .
JOURNAL OF CATALYSIS, 1999, 184 (01) :123-133
[5]  
Brook SL, 1998, J CATAL, V180, P225
[6]   High-temperature kinetics of the homogeneous reverse water-gas shift reaction [J].
Bustamante, F ;
Enick, RM ;
Cugini, AV ;
Killmeyer, RP ;
Howard, BH ;
Rothenberger, KS ;
Ciocco, MV ;
Morreale, BD .
AICHE JOURNAL, 2004, 50 (05) :1028-1041
[7]   A theoretical study of the O(1D)+CH4 reaction I [J].
Chang, AHH ;
Lin, SH .
CHEMICAL PHYSICS LETTERS, 2002, 363 (1-2) :175-181
[8]   Onboard motorcycle plasma-assisted catalysis system - Role of plasma and operating strategy [J].
Chao, Yu ;
Lee, How-Ming ;
Chen, Shiaw-Huei ;
Chang, Moo-Been .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (15) :6271-6279
[9]   Gliding arc gas discharge [J].
Fridman, A ;
Nester, S ;
Kennedy, LA ;
Saveliev, A ;
Mutaf-Yardimci, O .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1999, 25 (02) :211-231
[10]   Preparation of supported Mo2C-based catalysts from organic-inorganic hybrid precursor for hydrogen production from methanol decomposition [J].
Gao, Qingsheng ;
Zhang, Chenxi ;
Wang, Sinong ;
Shen, Wei ;
Zhang, Yahong ;
Xu, Hualong ;
Tang, Yi .
CHEMICAL COMMUNICATIONS, 2010, 46 (35) :6494-6496