Partial metric monoids and semivaluation spaces

被引:60
|
作者
Romaguera, S [1 ]
Schellekens, M
机构
[1] Univ Politecn Valencia, Inst Matemat Pura & Aplicada, Escuela Caminos, E-46071 Valencia, Spain
[2] Natl Univ Ireland Univ Coll Cork, Dept Comp Sci, Ctr Efficiency Oriented Languages, Cork, Ireland
基金
爱尔兰科学基金会;
关键词
partial metric monoid; quasi-metric; weightable; meet semilattice; semivaluation; interval domain; domain of words; dual complexity space;
D O I
10.1016/j.topol.2005.01.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stable partial metric spaces form a fundamental concept in Quantitative Domain Theory. Indeed, all domains have been shown to be quantifiable via a stable partial metric. Monoid operations arise naturally in a quantitative context and hence play a crucial role in several applications. Here, we show that the structure of a stable partial metric monoid provides a suitable framework for a unified approach to some interesting examples of monoids that appear in Theoretical Computer Science. We also introduce the notion of a sentivaluation monoid and show that there is a bijection between stable partial metric monoids and semivaluation monoids. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:948 / 962
页数:15
相关论文
共 50 条
  • [21] FIXED POINT THEOREMS IN QUASI-METRIC SPACES AND APPLICATIONS TO MULTIDIMENSIONAL FIXED POINT THEOREMS ON G-METRIC SPACES
    Agarwal, Ravi
    Karapinar, Erdal
    Roldan-Lopez-De-Hierro, Antonio-Francisco
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (09) : 1787 - 1816
  • [22] ON BISHOP-PHELPS PARTIAL ORDER, VARIATION MAPPINGS AND CARISTI'S FIXED POINT THEOREM IN QUASI-METRIC SPACES
    Shahzad, Naseer
    Valero, Oscar
    FIXED POINT THEORY, 2020, 21 (02): : 739 - 754
  • [23] Some topological properties of spaces of Lipschitz continuous maps on quasi-metric spaces
    Goubault-Larrecq, Jean
    TOPOLOGY AND ITS APPLICATIONS, 2020, 282
  • [24] Proximity of Multi-attribute Objects in Multiset Metric Spaces
    Petrovsky, Alexey B.
    PROCEEDINGS OF THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'18), VOL 1, 2019, 874 : 59 - 69
  • [25] Metric Geometry of Nonregular Weighted Carnot–Carathéodory Spaces
    Svetlana Selivanova
    Journal of Dynamical and Control Systems, 2014, 20 : 123 - 148
  • [26] FIXED POINTS ON PARTIALLY ORDERED QUASI-METRIC SPACES
    Beg, Ismat
    Eroglu, Irem
    Valero, Oscar
    FIXED POINT THEORY, 2024, 25 (02): : 473 - 494
  • [27] Applications of utility functions defined on quasi-metric spaces
    Romaguera, S
    Sanchis, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 283 (01) : 219 - 235
  • [28] Metric Geometry of Nonregular Weighted Carnot-Caratheodory Spaces
    Selivanova, Svetlana
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2014, 20 (01) : 123 - 148
  • [29] Remarks on G-metric spaces and fixed point theorems
    Mohamed Jleli
    Bessem Samet
    Fixed Point Theory and Applications, 2012
  • [30] Remarks on G-metric spaces and fixed point theorems
    Jleli, Mohamed
    Samet, Bessem
    FIXED POINT THEORY AND APPLICATIONS, 2012,