Partial metric monoids and semivaluation spaces

被引:61
作者
Romaguera, S [1 ]
Schellekens, M
机构
[1] Univ Politecn Valencia, Inst Matemat Pura & Aplicada, Escuela Caminos, E-46071 Valencia, Spain
[2] Natl Univ Ireland Univ Coll Cork, Dept Comp Sci, Ctr Efficiency Oriented Languages, Cork, Ireland
基金
爱尔兰科学基金会;
关键词
partial metric monoid; quasi-metric; weightable; meet semilattice; semivaluation; interval domain; domain of words; dual complexity space;
D O I
10.1016/j.topol.2005.01.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stable partial metric spaces form a fundamental concept in Quantitative Domain Theory. Indeed, all domains have been shown to be quantifiable via a stable partial metric. Monoid operations arise naturally in a quantitative context and hence play a crucial role in several applications. Here, we show that the structure of a stable partial metric monoid provides a suitable framework for a unified approach to some interesting examples of monoids that appear in Theoretical Computer Science. We also introduce the notion of a sentivaluation monoid and show that there is a bijection between stable partial metric monoids and semivaluation monoids. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:948 / 962
页数:15
相关论文
共 26 条
[1]  
[Anonymous], 1974, INFORM PROCESSING
[2]   Ordered fractal semigroups as a model of computation [J].
Arenas, FG ;
Puertas, ML ;
Romaguera, S .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (9-10) :1121-1129
[3]  
Birkhoff G., 1984, LATTICE THEORY AM MA, VXXV
[4]  
BUKATIN MA, 1997, LECT NOTES COMPUTER, V1234, P33
[5]   PCF extended with real numbers [J].
Escardo, MH .
THEORETICAL COMPUTER SCIENCE, 1996, 162 (01) :79-115
[6]  
ESCARDO MH, 1998, 3 REAL NUMB COMP C U
[7]  
ESCARDO MH, 1996, THESIS U LONDON
[8]  
Fletcher P., 1982, Quasi Uniform Spaces
[9]   Approximation of metric spaces by partial metric spaces [J].
Heckmann, R .
APPLIED CATEGORICAL STRUCTURES, 1999, 7 (1-2) :71-83
[10]  
JONES C, 1989, THEISS U EDINBURGH