A MINSAT approach for learning in logic domains

被引:24
作者
Felici, G
Truemper, K
机构
[1] CNR, Ist Anal Sistemi & Informat, I-00185 Rome, Italy
[2] Univ Texas, Dept Comp Sci, Richardson, TX 75083 USA
关键词
inductive inference; supervised learning; logic programming; minimum-cost satisfiability problem;
D O I
10.1287/ijoc.14.1.20.7709
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes a method for learning logic relationships that correctly classify a given data set. The method derives from given logic data certain minimum cost satisfiability problems, solves these problems, and deduces from the solutions the desired logic relationships. Uses of the method include data mining, learning logic in expert systems, and identification of critical characteristics for recognition systems. Computational tests have proved that the method is fast and effective.
引用
收藏
页码:20 / 36
页数:17
相关论文
共 42 条
  • [1] [Anonymous], 1990, Report No
  • [2] [Anonymous], 1991, MODELS NEURAL NETWOR
  • [3] [Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
  • [4] [Anonymous], 1990, PRACTICAL GUIDE NEUR
  • [5] BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504
  • [6] Data mining by decomposition: Adaptive search for hypothesis generation
    Bhargava, HK
    [J]. INFORMS JOURNAL ON COMPUTING, 1999, 11 (03) : 239 - 247
  • [7] Logical analysis of binary data with missing bits
    Boros, E
    Ibaraki, T
    Makino, K
    [J]. ARTIFICIAL INTELLIGENCE, 1999, 107 (02) : 219 - 263
  • [8] BOROS E, 1996, 2996 RUTCOR RUTG U
  • [9] Mathematical programming for data mining: Formulations and challenges
    Bradley, PS
    Fayyad, UM
    Mangasarian, OL
    [J]. INFORMS JOURNAL ON COMPUTING, 1999, 11 (03) : 217 - 238
  • [10] Breiman L, 1996, MACH LEARN, V24, P49