Invariant percolation and harmonic Dirichlet functions

被引:31
作者
Gaboriau, D [1 ]
机构
[1] ENS Lyon, UMPA, CNRS, UMR 5669, F-69364 Lyon 7, France
关键词
D O I
10.1007/s00039-005-0539-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to answer Question 1.10 and settle Conjecture 1.11 of Benjamini-Lyons-Schramm [BenLS] relating harmonic Dirichlet functions on a graph to those on the infinite clusters in the uniqueness phase of Bernoulli percolation. We extend the result to more general invariant percolations, including the random-cluster model. We prove the existence of the nonuniqueness phase for the Bernoulli percolation (and make some progress for random-cluster model) on unimodular transitive locally finite graphs admitting nonconstant harmonic Dirichlet functions. This is done by using the device of l(2) Betti numbers.
引用
收藏
页码:1004 / 1051
页数:48
相关论文
共 32 条
[1]   TREES AND AMENABLE EQUIVALENCE-RELATIONS [J].
ADAMS, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :1-14
[2]  
Atiyah M.F., 1976, ASTERISQUE, V32-33, P43
[3]   Cut sets and normed cohomology with applications to percolation [J].
Babson, E ;
Benjamini, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :589-597
[4]   Group cohomology, harmonic functions and the first L-2-Betti number [J].
Bekka, MEB ;
Valette, A .
POTENTIAL ANALYSIS, 1997, 6 (04) :313-326
[5]   Group-invariant percolation on graphs [J].
Benjamini, I ;
Lyons, R ;
Peres, Y ;
Schramm, O .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (01) :29-66
[6]   Percolation in the hyperbolic plane [J].
Benjamini, I ;
Schramm, O .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) :487-507
[7]  
Benjamini I, 1999, ANN PROBAB, V27, P1347
[8]  
Benjamini I, 1999, SYM MATH, V39, P56
[9]  
Benjamini I, 1996, ELECTRON COMMUN PROB, V1, P68
[10]   Gibbs states of graphical representations of the Potts model with external fields [J].
Biskup, M ;
Borgs, C ;
Chayes, JT ;
Kotecky, R .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (03) :1170-1210