Adaptive robust control of fractional-order swarm systems in the presence of model uncertainties and external disturbances

被引:23
作者
Soorki, Mojtaba Naderi [1 ]
Tavazoei, Mohammad Saleh [1 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
基金
美国国家科学基金会;
关键词
adaptive control; robust control; variable structure systems; asymptotic stability; Lyapunov methods; linear systems; fractional-order swarm systems; model uncertainties; external disturbances; asymptotic swarm stabilisation; fractional-integral sliding manifold; adaptive-robust sliding mode controller; fractional-order linear time-invariant swarm system; Lyapunov stability theorem; MULTIAGENT SYSTEMS; CONSENSUS; STABILITY; IDENTIFICATION; NETWORKS;
D O I
10.1049/iet-cta.2017.0035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the asymptotic swarm stabilisation of fractional-order swarm systems in the presence of two different kinds of model uncertainties and external disturbances while the upper bound of the uncertainties is a linear function of pseudo-states norms with unknown coefficients. To this end, first a fractional-integral sliding manifold is constructed and then an adaptive-robust sliding mode controller is designed to guarantee the asymptotic swarm stability in a fractional-order linear time-invariant swarm system. The stability analysis of the proposed control system is done based on the Lyapunov stability theorem. Using the proposed controller, the coefficients of the upper bound function of the uncertainties are estimated by adaptive laws. Simulation results are provided to show the effectiveness of the proposed controller.
引用
收藏
页码:961 / 969
页数:9
相关论文
共 47 条
  • [31] Robust consensus of fractional-order multi-agent systems with positive real uncertainty via second-order neighbors information
    Song, Chao
    Cao, Jinde
    Liu, Yangzheng
    [J]. NEUROCOMPUTING, 2015, 165 : 293 - 299
  • [32] Asymptotic swarm stability of fractional-order swarm systems in the presence of uniform time-delays
    Soorki, M. Naderi
    Tavazoei, M. S.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (06) : 1182 - 1191
  • [33] Soorki MN, 2016, IEEE-CAA J AUTOMATIC, V3, P320, DOI 10.1109/JAS.2016.7508808
  • [34] Adaptive Consensus Tracking for Fractional-Order Linear Time Invariant Swarm Systems
    Soorki, Mojtaba Naderi
    Tavazoei, Mohammad Saleh
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2014, 9 (03):
  • [35] Fractional-order linear time invariant swarm systems: asymptotic swarm stability and time response analysis
    Soorki, Mojtaba Naderi
    Tavazoei, Mohammad Saleh
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 845 - 854
  • [36] Identification of fractional-order systems with time delays using block pulse functions
    Tang, Yinggan
    Li, Ning
    Liu, Minmin
    Lu, Yao
    Wang, Weiwei
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 91 : 382 - 394
  • [37] Estimation of the Order and Parameters of a Fractional Order Model From a Noisy Step Response Data
    Tavakoli-Kakhki, Mahsan
    Tavazoei, Mohammad Saleh
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2014, 136 (03):
  • [38] Time-Optimal Control of Systems with Fractional Dynamics
    Tricaud, Christophe
    Chen, YangQuan
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
  • [39] Control of an uncertain fractional order economic system via adaptive sliding mode
    Wang, Zhen
    Huang, Xia
    Shen, Hao
    [J]. NEUROCOMPUTING, 2012, 83 : 83 - 88
  • [40] Wang Z, 2013, CHIN CONTR CONF, P6964