EXPLORING SYNONYMS AS CONTEXT IN ZERO-SHOT ACTION RECOGNITION

被引:0
|
作者
Alexiou, Ioannis [1 ]
Xiang, Tao [2 ]
Gong, Shaogang [1 ]
机构
[1] Queen Mary Univ London, London, England
[2] Vis Semant Ltd, London, England
来源
2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2016年
关键词
zero-shot learning; action recognition; semantic embedding;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Zero shot learning (ZSL) provides a solution to recognising unseen classes without class labelled data for model learning. Most ZSL methods aim to learn a mapping from a visual feature space to a semantic embedding space, e.g. attribute or word vector spaces. The use of word vector space is particularly attractive as compared to attribute, it offers vast auxiliary classes with free parts embedding without human annotation. However, using the word vector embedding often provides weaker discriminative power than manually labelled attributes of the auxiliary classes. This is compounded further in zero-shot action recognition due to richer content variations among action classes. In this work we propose to explore a broader semantic contextual information in the text domain to enrich the word vector representation of action classes. We show through extensive experiments that this method improves significantly the performance of a number of existing word vector embedding ZSL methods. Moreover, it also outperforms attribute embedding ZSL with human annotation.
引用
收藏
页码:4190 / 4194
页数:5
相关论文
共 50 条
  • [1] Deconfounding Causal Inference for Zero-Shot Action Recognition
    Wang, Junyan
    Jiang, Yiqi
    Long, Yang
    Sun, Xiuyu
    Pagnucco, Maurice
    Song, Yang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3976 - 3986
  • [2] SEMANTIC EMBEDDING SPACE FOR ZERO-SHOT ACTION RECOGNITION
    Xu, Xun
    Hospedales, Timothy
    Gong, Shaogang
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 63 - 67
  • [3] Transductive Zero-Shot Action Recognition by Word-Vector Embedding
    Xu, Xun
    Hospedales, Timothy
    Gong, Shaogang
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2017, 123 (03) : 309 - 333
  • [4] Transductive Zero-Shot Action Recognition by Word-Vector Embedding
    Xun Xu
    Timothy Hospedales
    Shaogang Gong
    International Journal of Computer Vision, 2017, 123 : 309 - 333
  • [5] Visual Context Embeddings for Zero-Shot Recognition
    Cho, Gunhee
    Choi, Yong Suk
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1039 - 1047
  • [6] Zero-shot action recognition in videos: A survey
    Estevam, Valter
    Pedrini, Helio
    Menotti, David
    NEUROCOMPUTING, 2021, 439 : 159 - 175
  • [7] Learning Using Privileged Information for Zero-Shot Action Recognition
    Gao, Zhiyi
    Hou, Yonghong
    Li, Wanqing
    Guo, Zihui
    Yu, Bin
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 347 - 362
  • [8] Global Semantic Descriptors for Zero-Shot Action Recognition
    Estevam, Valter
    Laroca, Rayson
    Pedrini, Helio
    Menotti, David
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1843 - 1847
  • [9] LoCATe-GAT: Modeling Multi-Scale Local Context and Action Relationships for Zero-Shot Action Recognition
    Sarma, Sandipan
    Singal, Divyam
    Sur, Arijit
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [10] Transductive Learning With Prior Knowledge for Generalized Zero-Shot Action Recognition
    Su, Taiyi
    Wang, Hanli
    Qi, Qiuping
    Wang, Lei
    He, Bin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (01) : 260 - 273