Bounds and algorithms for the K-Bessel function of imaginary order

被引:7
|
作者
Booker, Andrew R. [1 ]
Strombergsson, Andreas [2 ]
Then, Holger [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
基金
英国工程与自然科学研究理事会;
关键词
3RD KIND; EXPANSIONS;
D O I
10.1112/S1461157013000028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the paths of steepest descent, we prove precise bounds with numerical implied constants for the modified Bessel function K-ir(x) of imaginary order and its first two derivatives with respect to the order. We also prove precise asymptotic bounds on more general (mixed) derivatives without working out numerical implied constants. Moreover, we present an absolutely and rapidly convergent series for the computation of K-ir(x) and its derivatives, as well as a formula based on Fourier interpolation for computing with many values of r. Finally, we have implemented a subset of these features in a software library for fast and rigorous computation of K-ir(x).
引用
收藏
页码:78 / 108
页数:31
相关论文
共 50 条
  • [21] A series associated to Rankin-Selberg L-function and modified K-Bessel function
    Maji, Bibekananda
    Naskar, Pritam
    Sathyanarayana, Sumukha
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (03) : 695 - 714
  • [22] CERTAIN k-FRACTIONAL CALCULUS OPERATORS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION
    Agarwal, P.
    Suthar, D. L.
    Tadesse, Hagos
    Habenom, Haile
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (02): : 167 - 181
  • [23] ON THE SOLUTIONS OF GENERALIZED FRACTIONAL KINETIC EQUATIONS INVOLVING GENERALIZED K-BESSEL FUNCTION
    Shaktawat, Bhupender Singh
    Rawat, Devendra Singh
    Gupta, Rajeev Kumar
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2018, 17 (1-2): : 21 - 27
  • [24] K-bessel and K-hilbert systems and K-bases
    B. T. Bilalov
    Z. G. Guseinov
    Doklady Mathematics, 2009, 80 : 826 - 828
  • [26] K-bessel and K-hilbert systems and K-bases
    Bilalov, B. T.
    Guseinov, Z. G.
    DOKLADY MATHEMATICS, 2009, 80 (03) : 826 - 828
  • [27] Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform
    Agarwal, P.
    Ntouyas, S. K.
    Jain, S.
    Chand, M.
    Singh, G.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 1937 - 1942
  • [28] Radii of starlikeness and convexity of generalized k-Bessel functions
    Toklu, Evrim
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 171 - 185
  • [29] On some geometric results for generalized k-Bessel functions
    Toklu, Evrim
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [30] Differential equation and inequalities of the generalized k-Bessel functions
    Saiful R. Mondal
    Mohamed S. Akel
    Journal of Inequalities and Applications, 2018