Bounds and algorithms for the K-Bessel function of imaginary order

被引:7
|
作者
Booker, Andrew R. [1 ]
Strombergsson, Andreas [2 ]
Then, Holger [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
基金
英国工程与自然科学研究理事会;
关键词
3RD KIND; EXPANSIONS;
D O I
10.1112/S1461157013000028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the paths of steepest descent, we prove precise bounds with numerical implied constants for the modified Bessel function K-ir(x) of imaginary order and its first two derivatives with respect to the order. We also prove precise asymptotic bounds on more general (mixed) derivatives without working out numerical implied constants. Moreover, we present an absolutely and rapidly convergent series for the computation of K-ir(x) and its derivatives, as well as a formula based on Fourier interpolation for computing with many values of r. Finally, we have implemented a subset of these features in a software library for fast and rigorous computation of K-ir(x).
引用
收藏
页码:78 / 108
页数:31
相关论文
共 50 条
  • [1] Eisenstein series and an asymptotic for the K-Bessel function
    Jimmy Tseng
    The Ramanujan Journal, 2021, 56 : 323 - 345
  • [2] INTEGRAL REPRESENTATIONS OF THE k-BESSEL'S FUNCTION
    Gehlot, Kuldeep Singh
    Purohit, Sunil Dutt
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (01): : 17 - 23
  • [3] Recurrence Relations of K-Bessel's Function
    Gehlot, Kuldeep Singh
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (03): : 677 - 685
  • [4] Eisenstein series and an asymptotic for the K-Bessel function
    Tseng, Jimmy
    RAMANUJAN JOURNAL, 2021, 56 (01): : 323 - 345
  • [5] Certain Integral Transforms of Generalized k-Bessel Function
    Kottakkaran Sooppy Nisar
    Waseem Ahmad Khan
    Mohd Ghayasuddin
    Analysis in Theory and Applications, 2018, 34 (02) : 165 - 174
  • [6] ADDITION THEOREM AND CERTAIN PROPERTIES OF k-BESSEL FUNCTION
    Gehlot, K. S.
    Purohit, S. D.
    Sharma, J. B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (01): : 95 - 101
  • [7] Integral transforms involving a generalized k-Bessel function
    Khammash, Ghazi S.
    Salim, Tariq O.
    Aydi, Hassen
    Khattab, Noor N.
    Park, Choonkil
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [8] Certain Sequences Involving Product of k-Bessel Function
    Chand M.
    Agarwal P.
    Hammouch Z.
    International Journal of Applied and Computational Mathematics, 2018, 4 (4)
  • [9] Generalized Fractional Integral Formulas for the k-Bessel Function
    Suthar, D. L.
    Ayene, Mengesha
    JOURNAL OF MATHEMATICS, 2018, 2018
  • [10] Error bounds for uniform asymptotic expansions—modified bessel function of purely imaginary order
    Wei Shi
    Roderick Wong
    Chinese Annals of Mathematics, Series B, 2010, 31 : 759 - 780