Hitting Times and Periodicity in Random Dynamics

被引:11
作者
Rousseau, Jerome [1 ]
Todd, Mike [2 ]
机构
[1] Univ Fed Bahia, Dept Matemat, BR-40170110 Salvador, BA, Brazil
[2] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
关键词
Hitting times; Random dynamical systems; Exponential law; Extremal index; POINCARE RECURRENCE; STATISTICS; RETURN; LAWS;
D O I
10.1007/s10955-015-1325-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove quenched laws of hitting time statistics for random subshifts of finite type. In particular we prove a dichotomy between the law for periodic and for non-periodic points. We show that this applies to random Gibbs measures.
引用
收藏
页码:131 / 150
页数:20
相关论文
共 28 条
[1]   Hitting, returning and the short correlation function [J].
Abadi, Miguel .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (04) :593-609
[2]  
Aytac H., 2014, T AM MATH SOC
[3]   Return time statistics for unimodal maps [J].
Bruin, H ;
Vaienti, S .
FUNDAMENTA MATHEMATICAE, 2003, 176 (01) :77-94
[4]   Return time statistics via inducing [J].
Bruin, H ;
Saussol, B ;
Troubetzkoy, S ;
Vaienti, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :991-1013
[5]   RETURN TIME STATISTICS OF INVARIANT MEASURES FOR INTERVAL MAPS WITH POSITIVE LYAPUNOV EXPONENT [J].
Bruin, Henk ;
Todd, Mike .
STOCHASTICS AND DYNAMICS, 2009, 9 (01) :81-100
[6]   Exponential decay of correlations for random Lasota-Yorke maps [J].
Buzzi, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (01) :25-54
[7]  
Coelho Z, 2000, LOND MATH S, V279, P123
[8]   Statistics of closest return for some non-uniformly hyperbolic systems [J].
Collet, P .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 :401-420
[9]   Gibbs measures for fibred systems [J].
Denker, M ;
Gordin, M .
ADVANCES IN MATHEMATICS, 1999, 148 (02) :161-192
[10]   Conservativity of random Markov fibred systems [J].
Denker, Manfred ;
Kifer, Yuri ;
Stadlbauer, Manuel .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 :67-85