On a family of strongly regular graphs with λ=1

被引:2
|
作者
Bondarenko, Andriy V. [1 ,3 ]
Radchenko, Danylo V. [1 ,2 ]
机构
[1] Natl Taras Shevchenko Univ, Dept Math Anal, UA-01033 Kiev, Ukraine
[2] Max Planck Inst Math, D-53111 Bonn, Germany
[3] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
关键词
Strongly regular graph; Automorphism group; Brouwer-Haemers graph; Games graph; CODES; UNIQUENESS;
D O I
10.1016/j.jctb.2013.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a complete description of strongly regular graphs with parameters ((n(2) + 3n - 1)(2), n(2)(n + 3), 1, n(n + 1)). All possible such graphs are: the lattice graph L-3,L-3 with parameters (9, 4, 1, 2), the Brouwer-Haemers graph with parameters (81, 20, 1, 6), and the Games graph with parameters (729, 112, 1,20). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 50 条
  • [41] Exceptional strongly regular graphs with eigenvalue 3
    Makhnev, A. A.
    Paduchikh, D. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (04): : 167 - 174
  • [42] Exceptional Strongly Regular Graphs with Eigenvalue 3
    Makhnev, A. A.
    Paduchikh, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 : S93 - S101
  • [43] A Classification of the Strongly Regular Generalised Johnson Graphs
    Andrew D. Cannon
    John Bamberg
    Cheryl E. Praeger
    Annals of Combinatorics, 2012, 16 : 489 - 506
  • [44] Lifting constructions of strongly regular Cayley graphs
    Momihara, Koji
    Xiang, Qing
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 26 : 86 - 99
  • [45] Strongly regular graphs from differences of quadrics
    Hamilton, N
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 465 - 469
  • [46] q-analogs of strongly regular graphs
    Braun, Michael
    Crnkovic, Dean
    De Boeck, Maarten
    Crnkovic, Vedrana Mikulic
    Svob, Andrea
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 693 : 362 - 373
  • [47] A Classification of the Strongly Regular Generalised Johnson Graphs
    Cannon, Andrew D.
    Bamberg, John
    Praeger, Cheryl E.
    ANNALS OF COMBINATORICS, 2012, 16 (03) : 489 - 506
  • [48] On strongly regular graphs with eigenvalue 2 and their extensions
    Kabanov, V. V.
    Makhnev, A. A.
    Paduchikh, D. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (03): : 105 - 116
  • [49] Exceptional strongly regular graphs with eigenvalue 3
    A. A. Makhnev
    D. V. Paduchikh
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 93 - 101
  • [50] On strongly regular graphs with eigenvalue mu and their extensions
    Makhnev, A. A.
    Paduchikh, D. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (03): : 207 - 214