On a family of strongly regular graphs with λ=1

被引:2
|
作者
Bondarenko, Andriy V. [1 ,3 ]
Radchenko, Danylo V. [1 ,2 ]
机构
[1] Natl Taras Shevchenko Univ, Dept Math Anal, UA-01033 Kiev, Ukraine
[2] Max Planck Inst Math, D-53111 Bonn, Germany
[3] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
关键词
Strongly regular graph; Automorphism group; Brouwer-Haemers graph; Games graph; CODES; UNIQUENESS;
D O I
10.1016/j.jctb.2013.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a complete description of strongly regular graphs with parameters ((n(2) + 3n - 1)(2), n(2)(n + 3), 1, n(n + 1)). All possible such graphs are: the lattice graph L-3,L-3 with parameters (9, 4, 1, 2), the Brouwer-Haemers graph with parameters (81, 20, 1, 6), and the Games graph with parameters (729, 112, 1,20). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 50 条
  • [31] On Strongly Regular Graphs and the Friendship Theorem
    Sason, Igal
    MATHEMATICS, 2025, 13 (06)
  • [32] Some characterizations of strongly regular graphs
    Lepovie, Mirko
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2009, 29 (1-2) : 373 - 381
  • [33] A note on quotients of strongly regular graphs
    Giudici, Michael
    Smith, Murray R.
    ARS MATHEMATICA CONTEMPORANEA, 2010, 3 (02) : 147 - 150
  • [34] New families of strongly regular graphs
    Ionin, YJ
    Kharaghani, H
    JOURNAL OF COMBINATORIAL DESIGNS, 2003, 11 (03) : 208 - 217
  • [35] Strongly Regular Graphs from Weakly Regular Plateaued Functions
    Mesnager, Sihem
    Sinak, Ahmet
    2019 NINTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2019,
  • [36] The Gallai and Anti-Gallai Graphs of Strongly Regular Graphs
    Palathingal, Jeepamol J.
    Lakshmanan, S. Aparna
    Markowsky, Greg
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (01): : 171 - 184
  • [37] On Strongly Regular Graphs with k=2μ and Their Extensions
    A. A. Makhnev
    Siberian Mathematical Journal, 2002, 43 : 487 - 495
  • [38] Pseudocyclic association schemes and strongly regular graphs
    Ikuta, Takuya
    Munemasa, Akihiro
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (06) : 1513 - 1519
  • [39] Strongly regular edge-transitive graphs
    Morris, Joy
    Praeger, Cheryl E.
    Spiga, Pablo
    ARS MATHEMATICA CONTEMPORANEA, 2009, 2 (02) : 137 - 155
  • [40] On extensions of strongly regular graphs with eigenvalue 4
    Makhnev, A. A.
    Paduchikh, D., V
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (03): : 233 - 255