On a family of strongly regular graphs with λ=1

被引:2
|
作者
Bondarenko, Andriy V. [1 ,3 ]
Radchenko, Danylo V. [1 ,2 ]
机构
[1] Natl Taras Shevchenko Univ, Dept Math Anal, UA-01033 Kiev, Ukraine
[2] Max Planck Inst Math, D-53111 Bonn, Germany
[3] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
关键词
Strongly regular graph; Automorphism group; Brouwer-Haemers graph; Games graph; CODES; UNIQUENESS;
D O I
10.1016/j.jctb.2013.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a complete description of strongly regular graphs with parameters ((n(2) + 3n - 1)(2), n(2)(n + 3), 1, n(n + 1)). All possible such graphs are: the lattice graph L-3,L-3 with parameters (9, 4, 1, 2), the Brouwer-Haemers graph with parameters (81, 20, 1, 6), and the Games graph with parameters (729, 112, 1,20). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 50 条
  • [21] The chromatic index of strongly regular graphs
    Cioaba, Sebastian M.
    Guo, Krystal
    Haemers, Willem H.
    ARS MATHEMATICA CONTEMPORANEA, 2021, 20 (02) : 187 - 194
  • [22] On strongly regular graphs with eigenvalue μ and their extensions
    A. A. Makhnev
    D. V. Paduchikh
    Proceedings of the Steklov Institute of Mathematics, 2014, 285 : 128 - 135
  • [23] Distance-regular graphs with strongly regular subconstituents
    Kasikova, A
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (03) : 247 - 252
  • [24] Balanced colourings of strongly regular graphs
    Bailey, RA
    DISCRETE MATHEMATICS, 2005, 293 (1-3) : 73 - 90
  • [25] On strongly regular graphs with eigenvalue μ and their extensions
    Makhnev, A. A.
    Paduchikh, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 : S128 - S135
  • [26] Strongly regular graphs with maximal energy
    Haemers, Willem H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) : 2719 - 2723
  • [27] DIRECTED STRONGLY REGULAR GRAPHS AND THEIR CODES
    Alahmadi, Adel
    Alkenani, Ahmad
    Kim, Jon-Lark
    Shi, Minjia
    Sole, Patrick
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 497 - 505
  • [28] On outindependent subgraphs of strongly regular graphs
    Fiol, MA
    Garriga, E
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (02) : 123 - 140
  • [29] On quasi-strongly regular graphs
    Goldberg, Felix
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (06) : 437 - 451
  • [30] A geometrical characterization of strongly regular graphs
    Nozaki, Hiroshi
    Shinohara, Masashi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (10) : 2587 - 2600