ON THE EQUILIBRIUM POINTS, BOUNDEDNESS AND POSITIVITY OF A SVEIRS EPIDEMIC MODEL UNDER CONSTANT REGULAR VACCINATION

被引:0
作者
De la Sen, M. [1 ]
Alonso-Quesada, S. [1 ]
Ibeas, A. [2 ]
Nistal, R. [1 ]
机构
[1] Inst Res & Dev Proc, Campus Leioa,Aptdo 644, Bilbao, Spain
[2] Univ Autonoma Barcelona, Dept Telecom & Syst Eng, Barcelona, Spain
来源
2011 INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND TECHNOLOGY (ICMET 2011) | 2011年
关键词
Epidemic models; Equilibrium points; SEIRS epidemic models; SVEIRS epidemic models; positivity; vaccination control; BEVERTON-HOLT EQUATION; TIME-INVARIANT SYSTEMS; PULSE VACCINATION; PERMANENCE; STABILITY; BEHAVIOR; SIR;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper discusses the disease-free and endemic equilibrium points of a SVEIRS propagation disease model which may potentially involve the injection of a regular constant vaccination..
引用
收藏
页码:627 / +
页数:3
相关论文
共 31 条
[1]  
[Anonymous], 2008, MODELING INFECT DIS, DOI DOI 10.1515/9781400841035
[2]   Delay-dependent stability of reset systems [J].
Barreiro, Antonio ;
Banos, Alfonso .
AUTOMATICA, 2010, 46 (01) :216-221
[3]   Solutions of Linear Impulsive Differential Systems Bounded on the Entire Real Axis [J].
Boichuk, Alexandr ;
Langerova, Martina ;
Skorikova, Jaroslava .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[4]  
Daley D.J., 2005, CAMBRIDGE STUDIES MA, V15
[5]   The generalized Beverton-Holt equation and the control of populations [J].
De la Sen, M. .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (11) :2312-2328
[6]   A Control Theory point of view on Beverton-Holt equation in population dynamics and some of its generalizations [J].
De la Sen, M. ;
Alonso-Quesada, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) :464-481
[7]   On positivity of singular regular linear time-delay time-invariant systems subject to multiple internal and external incommensurate point delays [J].
De la Sen, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :382-401
[8]   Quadratic stability and stabilization of switched dynamic systems with uncommensurate internal point delays [J].
de la Sen, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) :508-526
[9]   Model-matching-based control of the Beverton-Holt equation in Ecology [J].
De La Sen, M. ;
Alonso-Quesada, S. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2008, 2008
[10]   Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases [J].
De la Sen, M. ;
Alonso-Quesada, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (07) :2616-2633