Semantic Segmentation Using Fully Convolutional Networks and Random Walk with Prediction Prior

被引:0
作者
Lei, Xiaoyu [1 ]
Lu, Yao [1 ]
Liu, Tingxi [1 ]
Shi, Xiaoxue [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
来源
ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II | 2018年 / 10736卷
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Fully Convolutional Networks; Random walk; IMAGE SEGMENTATION;
D O I
10.1007/978-3-319-77383-4_13
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fully Convolutional Networks (FCNs) for semantic segmentation always lead to coarse predictions, especially in border regions. Improved models of FCNs with conditional random fields (CRFs), however, cause significant increase in model complexity and scattered distribution of pixels in border regions. To address these issues, we propose a novel approach combining random walk with FCNs to capture global features and refine border regions of segmentation results. We design a double-erosion mechanism on the prediction results of FCNs to initialize random walk, and apply prediction scores as a global prior of random walk model by adding an extra item into the weight matrix of the graph constructed from an image. Experimental results show that the proposed method acts better than Dense CRF in pixel accuracy and mean IoU, and obtains smoother results. In addition, our method significantly reduces the time cost of refinement process.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 19 条
[1]  
[Anonymous], 2014, Computer Science
[2]  
[Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.348
[3]  
[Anonymous], 2012, P INT C NEUR INF PRO
[4]  
[Anonymous], 2013, P INT C MACH LEARN
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   Sub-Markov Random Walk for Image Segmentation [J].
Dong, Xingping ;
Shen, Jianbing ;
Shao, Ling ;
Van Gool, Luc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) :516-527
[7]  
Grady L, 2004, LECT NOTES COMPUT SC, V3117, P230
[8]   Random walks for image segmentation [J].
Grady, Leo .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (11) :1768-1783
[9]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678
[10]  
Kim TH, 2008, LECT NOTES COMPUT SC, V5304, P264