ON 5-MANIFOLDS ADMITTING RANK TWO DISTRIBUTIONS OF CARTAN TYPE

被引:6
作者
Dave, Shantanu [1 ]
Haller, Stefan [2 ,3 ]
机构
[1] Univ Vienna, Wolfgang Pauli Inst, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[3] Univ Vienna, Dept Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Rank two distributions of Cartan type in dimension five; parabolic geometry; h-principle; mod; 2; index; Lutz-Martinez theorem; OVERTWISTED CONTACT STRUCTURES; VECTOR-FIELDS; CLASSIFICATION; EXISTENCE;
D O I
10.1090/tran/7495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the question whether an orientable 5-manifold can be equipped with a rank two distribution of Cartan type and what 2-plane bundles can be realized. We obtain a complete answer for open manifolds. In the closed case, we settle the topological part of this problem and present partial results concerning its geometric aspects and new examples.
引用
收藏
页码:4911 / 4929
页数:19
相关论文
共 43 条
[31]  
Milnor J, 1963, Enseign. Math., V9, P198
[32]  
Milnor J. W., 1974, ANN MATH STUD, V76
[33]   Differential equations and conformal structures [J].
Nurowski, P .
JOURNAL OF GEOMETRY AND PHYSICS, 2005, 55 (01) :19-49
[34]  
Sagerschnig K, 2008, Weyl structures for generic rank two distributions in dimension five
[35]  
Sagerschnig K, 2006, ARCH MATH-BRNO, V42, P329
[36]   ON STRUCTURE OF 5-MANIFOLDS [J].
SMALE, S .
ANNALS OF MATHEMATICS, 1962, 75 (01) :38-&
[37]   A generalization of the Atiyah-Dupont vector fields theory [J].
Tang, ZZ ;
Zhang, WP .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (04) :777-796
[38]  
Thom R., 1954, Comment. Math. Helv, V28, P17, DOI [10.1007/BF02566923, DOI 10.1007/BF02566923]
[39]   INDEX OF A TANGENT 2-FIELD [J].
THOMAS, E .
COMMENTARII MATHEMATICI HELVETICI, 1967, 42 (02) :86-&
[40]   VECTOR FIELDS ON LOW DIMENSIONAL MANIFOLDS [J].
THOMAS, E .
MATHEMATISCHE ZEITSCHRIFT, 1968, 103 (02) :85-&