Multi-scale pathology image texture signature is a prognostic factor for resectable lung adenocarcinoma: a multi-center, retrospective study

被引:11
作者
Wang, Yumeng [1 ]
Pan, Xipeng [1 ,2 ,3 ,4 ]
Lin, Huan [2 ,5 ]
Han, Chu [2 ,3 ]
An, Yajun [1 ]
Qiu, Bingjiang [2 ,3 ,4 ]
Feng, Zhengyun [1 ]
Huang, Xiaomei [2 ]
Xu, Zeyan [2 ,5 ]
Shi, Zhenwei [2 ,3 ,4 ]
Chen, Xin [6 ]
Li, Bingbing [7 ]
Yan, Lixu [8 ]
Lu, Cheng [2 ,3 ]
Li, Zhenhui [2 ,3 ,4 ,9 ]
Cui, Yanfen [2 ,3 ,4 ,10 ]
Liu, Zaiyi [2 ,3 ]
Liu, Zhenbing [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
[2] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Radiol, Guangzhou 510080, Peoples R China
[3] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Prov Key Lab Artificial Intelligence Med, Guangzhou 510080, Peoples R China
[4] Guangdong Cardiovasc Inst, Guangzhou 510080, Peoples R China
[5] South China Univ Technol, Sch Med, Guangzhou 510006, Peoples R China
[6] South China Univ Technol, Guangzhou Peoples Hosp 1, Sch Med, Dept Radiol, Guangzhou 510180, Peoples R China
[7] Ganzhou Municipal Hosp, Guangdong Prov Peoples Hosp Ganzhou Hosp, Dept Pathol, 49 Dagong Rd, Ganzhou 341000, Peoples R China
[8] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Pathol, Guangzhou 510080, Peoples R China
[9] Kunming Med Univ, Affiliated Hosp 3, Yunnan Canc Hosp, Dept Radiol,Yunnan Canc Ctr, Kunming 650118, Peoples R China
[10] Shanxi Med Univ, Chinese Acad Med Sci, Shanxi Prov Canc Hosp, Shanxi Hosp,Canc Hosp,Dept Radiol, Taiyuan 030013, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 美国国家科学基金会;
关键词
Lung adenocarcinoma; Prognosis; Texture analysis; Whole slide image; Artificial intelligence; CANCER;
D O I
10.1186/s12967-022-03777-x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: Tumor histomorphology analysis plays a crucial role in predicting the prognosis of resectable lung adenocarcinoma (LUAD). Computer-extracted image texture features have been previously shown to be correlated with outcome. However, a comprehensive, quantitative, and interpretable predictor remains to be developed. Methods: In this multi-center study, we included patients with resectable LUAD from four independent cohorts. An automated pipeline was designed for extracting texture features from the tumor region in hematoxylin and eosin (H & E)-stained whole slide images (WSIs) at multiple magnifications. A multi-scale pathology image texture signature (MPIS) was constructed with the discriminative texture features in terms of overall survival (OS) selected by the LASSO method. The prognostic value of MPIS for OS was evaluated through univariable and multivariable analysis in the discovery set (n = 111) and the three external validation sets (V-1, n = 115; V-2, n = 116; and V-3, n = 246). We constructed a Cox proportional hazards model incorporating clinicopathological variables and MPIS to assess whether MPIS could improve prognostic stratification. We also performed histo-genomics analysis to explore the associations between texture features and biological pathways. Results: A set of eight texture features was selected to construct MPIS. In multivariable analysis, a higher MPIS was associated with significantly worse OS in the discovery set (HR 5.32, 95%CI 1.72-16.44; P = 0.0037) and the three external validation sets (V-1: HR 2.63, 95%CI 1.10-6.29, P = 0.0292; V-2: HR 2.99, 95%CI 1.34-6.66, P = 0.0075; V-3: HR 1.93, 95%CI 1.15-3.23, P = 0.0125). The model that integrated clinicopathological variables and MPIS had better discrimination for OS compared to the clinicopathological variables-based model in the discovery set (C-index, 0.837 vs. 0.798) and the three external validation sets (V-1: 0.704 vs. 0.679; V-2: 0.728 vs. 0.666; V-3: 0.696 vs. 0.669). Furthermore, the identified texture features were associated with biological pathways, such as cytokine activity, structural constituent of cytoskeleton, and extracellular matrix structural constituent. Conclusions: MPIS was an independent prognostic biomarker that was robust and interpretable. Integration of MPIS with clinicopathological variables improved prognostic stratification in resectable LUAD and might help enhance the quality of individualized postoperative care.
引用
收藏
页数:17
相关论文
共 40 条
[1]   The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging [J].
Amin, Mahul B. ;
Greene, Frederick L. ;
Edge, Stephen B. ;
Compton, Carolyn C. ;
Gershenwald, Jeffrey E. ;
Brookland, Robert K. ;
Meyer, Laura ;
Gress, Donna M. ;
Byrd, David R. ;
Winchester, David P. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2017, 67 (02) :93-99
[2]  
[Anonymous], 1996, J. Comput. Graphical Stat, DOI [DOI 10.1080/10618600.1996.10474713, DOI 10.2307/1390807]
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 [J].
Barbie, David A. ;
Tamayo, Pablo ;
Boehm, Jesse S. ;
Kim, So Young ;
Moody, Susan E. ;
Dunn, Ian F. ;
Schinzel, Anna C. ;
Sandy, Peter ;
Meylan, Etienne ;
Scholl, Claudia ;
Froehling, Stefan ;
Chan, Edmond M. ;
Sos, Martin L. ;
Michel, Kathrin ;
Mermel, Craig ;
Silver, Serena J. ;
Weir, Barbara A. ;
Reiling, Jan H. ;
Sheng, Qing ;
Gupta, Piyush B. ;
Wadlow, Raymond C. ;
Le, Hanh ;
Hoersch, Sebastian ;
Wittner, Ben S. ;
Ramaswamy, Sridhar ;
Livingston, David M. ;
Sabatini, David M. ;
Meyerson, Matthew ;
Thomas, Roman K. ;
Lander, Eric S. ;
Mesirov, Jill P. ;
Root, David E. ;
Gilliland, D. Gary ;
Jacks, Tyler ;
Hahn, William C. .
NATURE, 2009, 462 (7269) :108-U122
[5]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[6]   Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology [J].
Bhargava, Rohit ;
Madabhushi, Anant .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 18, 2016, 18 :387-412
[7]   The Role of Tumor Stroma in Cancer Progression and Prognosis Emphasis on Carcinoma-Associated Fibroblasts and Non-small Cell Lung Cancer [J].
Bremnes, Roy M. ;
Donnem, Tom ;
Al-Saad, Samer ;
Al-Shibli, Khalid ;
Andersen, Sigve ;
Sirera, Rafael ;
Camps, Carlos ;
Marinez, Inigo ;
Busund, Lill-Tove .
JOURNAL OF THORACIC ONCOLOGY, 2011, 6 (01) :209-217
[8]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[9]   Histopathological Images and Multi-Omics Integration Predict Molecular Characteristics and Survival in Lung Adenocarcinoma [J].
Chen, Linyan ;
Zeng, Hao ;
Xiang, Yu ;
Huang, Yeqian ;
Luo, Yuling ;
Ma, Xuelei .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
[10]   Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non-Small Cell Lung Cancer [J].
Corredor, German ;
Wang, Xiangxue ;
Zhou, Yu ;
Lu, Cheng ;
Fu, Pingfu ;
Syrigos, Konstantinos ;
Rimm, David L. ;
Yang, Michael ;
Romero, Eduardo ;
Schalper, Kurt A. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
CLINICAL CANCER RESEARCH, 2019, 25 (05) :1526-1534