A multi-objective tabu search algorithm based on decomposition for multi-objective unconstrained binary quadratic programming problem

被引:21
|
作者
Zhou, Ying [1 ]
Wang, Jiahai [2 ]
Wu, Ziyan [3 ]
Wu, Keke [1 ]
机构
[1] Shenzhen Inst Informat Technol, Sch Comp Sci, Shenzhen 518172, Peoples R China
[2] Sun Yat Sen Univ, Dept Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] China Secur Depository & Clearing Corp Ltd, Shenzhen Branch, 2012 Shennan Blvd, Shenzhen 518038, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization; Decomposition; Tabu search; HOPFIELD NETWORK; LOCAL SEARCH; EVOLUTIONARY; MOEA/D;
D O I
10.1016/j.knosys.2017.11.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unconstrained binary quadratic programming problem (UBQP) is a well-known NP-hard problem. In this problem, a quadratic 0-1 function is maximized. Numerous single-objective combinatorial optimization problems can be expressed as UBQP. To enhance the expressive ability of UBQP, a multi-objective extension of UBQP and a set of benchmark instances have been introduced recently. A decomposition-based multi-objective tabu search algorithm for multi-objective UBQP is proposed in this paper. In order to obtain a good Pareto set approximation, a novel weight vector generation method is first introduced. Then, the problem is decomposed into a number of subproblems by means of scalarizing approaches. The choice of different types of scalarizing approaches can greatly affect the performance of an algorithm. Therefore, to take advantages of different scalarizing approaches, both the weighted sum approach and the Tchebycheff approach are utilized adaptively in the proposed algorithm. Finally, in order to better utilize the problem-specific knowledge, a tabu search procedure is designed to further optimize these subproblems simultaneously. Experimental results on 50 benchmark instances indicate that the proposed algorithm performs better than current state-of-the-art algorithms. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 30
页数:13
相关论文
共 50 条
  • [41] A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm
    Ozkis, Ahmet
    Babalik, Ahmet
    INFORMATION SCIENCES, 2017, 402 : 124 - 148
  • [42] A New Evolutionary Algorithm Based on Decomposition for Multi-objective Optimization Problems
    Dai, Cai
    Lei, Xiujuan
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 33 - 38
  • [43] Parametric Optimization Design of Aircraft Based on Hybrid Parallel Multi-objective Tabu Search Algorithm
    Qiu Zhiping
    Zhang Yuxing
    CHINESE JOURNAL OF AERONAUTICS, 2010, 23 (04) : 430 - 437
  • [44] A Regional Multi-Objective Tabu Search Algorithm for a Green Heterogeneous Dial-A-Ride Problem
    Abedi, Mehdi
    Chiong, Raymond
    Athauda, Rukshan
    Seidgart, Hany
    Michalewicz, Zbigniew
    Sturt, Andrew
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2082 - 2089
  • [45] A Novel Cooperation Multi-Objective Optimization Approach: Multi-Swarm Multi-Objective Evolutionary Algorithm Based on Decomposition (MSMOEA/D)
    Liu, Rui
    Chen, Hanning
    Wang, Zhixue
    Hu, Yabao
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [46] A Parameterless Decomposition-based Evolutionary Multi-objective Algorithm
    Gu, Fangqing
    Cheung, Yiu-ming
    Liu, Hai-Lin
    Lin, Zixian
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 842 - 845
  • [47] An improved multi-objective optimization algorithm based on decomposition
    Wang, Wanliang
    Wang, Zheng
    Li, Guoqing
    Ying, Senliang
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 327 - 333
  • [48] Solving Multi-objective Chance Constraint Quadratic Fractional Programming Problem
    Belay, Berhanu
    Abebaw, Adane
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 441 - 451
  • [49] Multi-objective two-level medical facility location problem and tabu search algorithm
    Zhang, Huizhen
    Zhang, Kun
    Chen, Yuting
    Ma, Liang
    INFORMATION SCIENCES, 2022, 608 : 734 - 756
  • [50] An improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy
    Dong, Ning
    Dai, Cai
    KNOWLEDGE-BASED SYSTEMS, 2019, 163 : 572 - 580