Random walk in Markovian environment

被引:40
作者
Dolgopyat, Dmitry [1 ]
Keller, Gerhard [2 ]
Liverani, Carlangelo [3 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Erlangen Nurnberg, Math Inst, D-91054 Erlangen, Germany
[3] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
central limit theorem; random walk; random environment; Markov process;
D O I
10.1214/07-AOP369
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a quenched central limit theorem for random walks with bounded increments in a randomly evolving, environment on Z(d). We assume that the transition probabilities of the walk depend not too strongly on the environment and that the evolution of the environment is Markovian with strong spatial and temporal mixing properties.
引用
收藏
页码:1676 / 1710
页数:35
相关论文
共 26 条
[1]  
[Anonymous], B POLISH ACAD SCI MA
[2]  
Bandyopadhyay A., 2006, Alea, V1, P205
[3]   Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive [J].
Boldrighini, C ;
Minlos, RA ;
Pellegrinotti, A .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (01) :133-156
[4]  
BOLDRIGHINI C, 2000, DOBRUSHINS WAY PROBA, P13
[5]  
BOLDRIGHINI C, 1994, ADV SOVIET MATH, V20, P21
[6]  
Bolthausen Erwin, 2002, Methods Appl. Anal., V9, P345, DOI DOI 10.4310/MAA.2002.V9.N3.A4
[7]   Gaussian fluctuations for random walks in random mixing environments [J].
Comets, F .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) :87-113
[8]   Gaussian limit theorems for diffusion processes and an application [J].
Conlon, JC ;
Song, RM .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 81 (01) :103-128
[9]   The central limit theorem for Markov chains started at a point [J].
Derriennic, Y ;
Lin, M .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (01) :73-76
[10]   Fractional Poisson equations and ergodic theorems for fractional coboundaries [J].
Derriennic, Y ;
Lin, M .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) :93-130