Point processes with finite-dimensional conditional probabilities

被引:33
作者
Asmussen, S
Bladt, M
机构
[1] Lund Univ, Dept Math Stat, S-22100 Lund, Sweden
[2] Univ Nacl Autonoma Mexico, IImas, Mexico City, DF, Mexico
关键词
Markovian arrival process; matrix-exponential distribution; Palm theory; rational Laplace transform; semi-group;
D O I
10.1016/S0304-4149(99)00006-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the structure of point processes N with the property that the P(theta(t)N epsilon . \F-t ) vary in a finite-dimensional space where theta(t) is the shift and F-t the sigma-freld generated by the counting process up to time t. This class of point processes is strictly larger than Neuts' class of Markovian arrival processes. On the one hand, it allows for more general features like interarrival distributions which are matrix-exponential rather than phase type, on the other the probabilistic interpretation is a priori less clear. Nevertheless, the properties are very similar. In particular, finite-dimensional distributions of interarrival times, moments, Laplace transforms, Palm distributions, etc., are shown to be given by two fundamental matrices C, D just as for the Markovian arrival process. We also give a probabilistic interpretation in terms of a piecewise deterministic Markov process on a compact convex subset of R-P, whose jump times are identical to the epochs of N. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 24 条
[1]   MARKED POINT-PROCESSES AS LIMITS OF MARKOVIAN ARRIVAL STREAMS [J].
ASMUSSEN, S ;
KOOLE, G .
JOURNAL OF APPLIED PROBABILITY, 1993, 30 (02) :365-372
[2]  
Asmussen S, 2008, APPL PROBABILITY QUE, V51
[3]  
ASMUSSEN S, 1998, ENCY STAT SCI
[4]  
ASMUSSEN S, 1996, MATRIX ANAL METHODS, P313
[5]  
Baccelli F., 1994, Elements of Queueing Theory
[6]  
Cohen JW., 1982, SINGLE SERVER QUEUE
[7]  
Cox D.R., 1955, P CAMBRIDGE PHILOS S, V51, P313, DOI 10.1017/S0305004100030231
[8]  
David Lucantoni M., 1991, Commun. Stat. Stoch. Models, V7, P1, DOI DOI 10.1080/15326349108807174
[9]  
DAVIS MHA, 1993, MARKOV PROCESSES OPT
[10]  
FRANKEN P, 1982, QUEUES POINT PROCESS