Allee-Effect-Induced Instability in a Reaction-Diffusion Predator-Prey Model

被引:10
作者
Wang, Weiming [1 ]
Cai, Yongli [2 ]
Zhu, Yanuo [1 ]
Guo, Zhengguang [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
PATTERN-FORMATION; SPATIOTEMPORAL COMPLEXITY; LIMIT-CYCLES; STABILITY; DYNAMICS; SYSTEMS; SPACE; EXISTENCE; INVASION; PLANKTON;
D O I
10.1155/2013/487810
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the spatiotemporal dynamics induced by Allee effect in a reaction-diffusion predator-prey model. In the case without Allee effect, there is nonexistence of diffusion-driven instability for the model. And in the case with Allee effect, the positive equilibrium may be unstable under certain conditions. This instability is induced by Allee effect and diffusion together. Furthermore, via numerical simulations, the model dynamics exhibits both Allee effect and diffusion controlled pattern formation growth to holes, stripes-holes mixture, stripes, stripes-spots mixture, and spots replication, which shows that the dynamics of the model with Allee effect is not simple, but rich and complex.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Dynamics of a Leslie-Gower predator-prey model with additive Allee effect
    Cai, YongLi
    Zhao, Caidi
    Wang, Weiming
    Wang, Jinfeng
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (07) : 2092 - 2106
  • [22] Turing instability of the periodic solutions for a predator-prey model with Allee effect and cross-diffusion
    Yang, Hong
    Zhong, Zhaoman
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01):
  • [23] Bifurcation analysis in a predator-prey model with Allee effect
    Zhu, Jingwen
    Wu, Ranchao
    Chen, Mengxin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2021, 76 (12): : 1091 - 1105
  • [24] Impact of the strong Allee effect in a predator-prey model
    Ma, Yudan
    Zhao, Ming
    Du, Yunfei
    AIMS MATHEMATICS, 2022, 7 (09): : 16296 - 16314
  • [25] Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge
    Guin, Lakshmi Narayan
    Mondal, Benukar
    Chakravarty, Santabrata
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (06)
  • [26] Delay-driven pattern formation in a reaction-diffusion predator-prey model incorporating a prey refuge
    Lian, Xinze
    Wang, Hailing
    Wang, Weiming
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [27] TRAVELING WAVE SOLUTIONS OF A REACTION-DIFFUSION PREDATOR-PREY MODEL
    Liu, Jiang
    Shang, Xiaohui
    Du, Zengji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1063 - 1078
  • [28] Controllability of a Reaction-Diffusion System Describing Predator-Prey Model
    Sakthivel, K.
    Devipriya, G.
    Balachandran, K.
    Kim, J. -H.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (07) : 831 - 851
  • [29] Hopf bifurcation induced by fear: A Leslie-Gower reaction-diffusion predator-prey model
    Jin, Jiani
    Qi, Haokun
    Liu, Bing
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (12): : 6503 - 6534
  • [30] Impacts of nonlocal fear effect and delay on a reaction-diffusion predator-prey model
    Zhang, Xuebing
    Liu, Jia
    Wang, Guanglan
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2025, 18 (01)