The search for fractional order in heavy quarkonia spectra

被引:29
作者
Al-Jamel, Ahmed [1 ]
机构
[1] Al Al Bayt Univ, Fac Sci, Phys Dept, POB 130040, Mafraq 25113, Jordan
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2019年 / 34卷 / 10期
关键词
Heavy quarkonia; conformable fractional derivative; extended Nikiforov-Uvarov; N-dimensional Schrodinger equation; HYDROGEN-ATOM; EQUATION; MASSES;
D O I
10.1142/S0217751X19500544
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Using the concept of conformable fractional derivative, we study the properties of fractional N-dimensional Schrodinger equation for the potential V(r) = -k/r + g/r(2) + ar + br(2). The extended Nikiforov-Uvarov method is generalized to the fractional domain and then employed to obtain the analytic exact energy eigenvalues and eigenfunctions and their dependence on the fractional order alpha and the dimension N. To test its applicability, we apply the method on heavy quarkonia systems, and reproduce their mass spectra and fractional radial probabilities at different values of alpha and N. Comparing the mass spectra with the experimental data, we discuss to what extent fractional models can account for some features in the description of heavy quarkonia at certain dimensional space.
引用
收藏
页数:13
相关论文
共 30 条
[1]   Saturation in heavy quarkonia spectra with energy-dependent confining potential in N-dimensional space [J].
Al-Jamel, Ahmed .
MODERN PHYSICS LETTERS A, 2018, 33 (32)
[2]   Dynamics of heavy quarkonia in memory-dependent dissipative environment from Bohmian trajectory perspective [J].
Al-Jamel, Ahmed .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (28)
[3]   A memory-dependent derivative model for damping in oscillatory systems [J].
Al-Jamel, Ahmed ;
Al-Jamal, Mohammad F. ;
El-Karamany, Ahmed .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (11) :2221-2229
[4]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[5]  
Baleanu D., 2012, FRACTIONAL CALCULUS, V3, DOI 10.1142/8180
[6]  
Brambilla N., ARXIV11061051V1HEPPH
[7]  
Brambilla N., 2005, CERN Yellow Report, CERN-2005-005
[8]   Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law [J].
Bures, Martin ;
Siegl, Petr .
ANNALS OF PHYSICS, 2015, 354 :316-327
[9]   Is there a stable hydrogen atom in higher dimensions? [J].
Burgbacher, F ;
Lämmerzahl, C ;
Macias, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :625-634
[10]  
Caputo M., 2015, Progress in Fractional Differentiation Applications, V1, P73, DOI DOI 10.12785/PFDA/010201