Robust Rietveld refinement in the presence of impurity phases

被引:0
作者
David, WIF [1 ]
机构
[1] Rutherford Appleton Lab, ISIS Facil, Chilton OX11 0QX, Oxon, England
关键词
D O I
10.1107/S0021889801011396
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A modified least-squares analysis is presented that allows reliable structural parameters to be extracted from a powder diffraction pattern even in the presence of a substantial unmodelled impurity contribution. The algorithm is developed within the context of Bayesian probability theory. Experimental points that fall above those calculated, and are thus more probably from impurity peaks, are systematically down-weighted. This approach is illustrated with a two-phase example.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 9 条
[1]   A BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS [J].
BOX, GEP ;
TIAO, GC .
BIOMETRIKA, 1968, 55 (01) :119-&
[2]   Background estimation using a robust Bayesian analysis [J].
David, WIF ;
Sivia, DS .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2001, 34 :318-324
[3]  
Ibberson R.M., 1992, RAL92031
[4]  
Jeffreys H., 1939, THEORY PROBABILITY
[5]  
Prince E., 1985, STRUCTURE STAT CRYST, P183
[6]  
Prince E., 1982, MATH TECHNIQUES CRYS, DOI [10.1007/978-3-662-25351-9, DOI 10.1007/978-3-662-25351-9]
[7]  
Sivia D., 1996, Data Analysis: A Bayesian Tutorial
[8]  
SIVIA DS, 1996, P MAX ENTR C, P131
[9]   Analysis of weighting schemes [J].
Spagna, R ;
Camalli, M .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1999, 32 :934-942