Fabrication of Ag Nanoparticles Embedded in Al:ZnO as Potential Light-Trapping Plasmonic Interface for Thin Film Solar Cells

被引:21
作者
Nasser, Hisham [1 ,3 ]
Saleh, Zaki M. [1 ]
Ozkol, Engin [1 ,4 ]
Gunoven, Mete [1 ,3 ]
Bek, Alpan [1 ,2 ]
Turan, Rasit [1 ,2 ]
机构
[1] Middle E Tech Univ, Ctr Solar Energy Res & Applicat GUNAM, TR-06800 Ankara, Turkey
[2] Middle E Tech Univ, Dept Phys, TR-06800 Ankara, Turkey
[3] Middle E Tech Univ, Grad Sch Nat & Appl Sci, Micro & Nanotechnol Program, TR-06800 Ankara, Turkey
[4] Middle E Tech Univ, Dept Chem Engn, TR-06800 Ankara, Turkey
关键词
Silver nanoparticles; Dewetting; Plasmonic resonance; Light-trapping; Solar cells; Aluminum zinc oxide; SILICON NANOCRYSTALS; SILVER FILMS; ABSORPTION; EFFICIENCY; DEVICES; SI;
D O I
10.1007/s11468-013-9562-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Incident photon conversion efficiency of the absorbing materials at either side of a thin film solar module can be enhanced by integrating a plasmonic interface. Silver nanoparticles represent a good candidate that can be integrated to a thin film solar cell for efficient light-trapping. The aim of this work is to fabricate plasmonically active interface consisting of Ag nanoparticles embedded in Al:ZnO that has the potential to be used at the front surface and at the back reflector of a thin film solar cell to enhance light-trapping and increase the photoconversion efficiency. We show that Ag can readily dewet the Al:ZnO surface when annealed at temperatures significantly lower than the melting temperature of Ag, which is beneficial for lowering the thermal budget and cost in solar cell fabrication. We find that such an interface fabricated by a simple dewetting technique leads to plasmonic resonance in the visible and near infrared regions of the solar spectrum, which is important in enhancing the conversion efficiency of thin film solar cells.
引用
收藏
页码:1485 / 1492
页数:8
相关论文
共 32 条
  • [1] Overview on SiN surface passivation of crystalline silicon solar cells
    Aberle, AG
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 65 (1-4) : 239 - 248
  • [2] Toward high-efficiency solar upconversion with plasmonic nanostructures
    Atre, Ashwin C.
    Garcia-Etxarri, Aitzol
    Alaeian, Hadiseh
    Dionne, Jennifer A.
    [J]. JOURNAL OF OPTICS, 2012, 14 (02)
  • [3] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
  • [4] Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum
    Aubry, Alexandre
    Lei, Dang Yuan
    Fernandez-Dominguez, Antonio I.
    Sonnefraud, Yannick
    Maier, Stefan A.
    Pendry, J. B.
    [J]. NANO LETTERS, 2010, 10 (07) : 2574 - 2579
  • [5] Multiple exciton generation in colloidal silicon nanocrystals
    Beard, Matthew C.
    Knutsen, Kelly P.
    Yu, Pingrong
    Luther, Joseph M.
    Song, Qing
    Metzger, Wyatt K.
    Ellingson, Randy J.
    Nozik, Arthur J.
    [J]. NANO LETTERS, 2007, 7 (08) : 2506 - 2512
  • [6] Tunable light trapping for solar cells using localized surface plasmons
    Beck, F. J.
    Polman, A.
    Catchpole, K. R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
  • [7] Bohren C F, 2004, ABSORPTION SCATTERIN
  • [8] Formation and photoluminescence of Si quantum dots in SiO2/Si3N4 hybrid matrix for all-Si tandem solar cells
    Di, D.
    Perez-Wurfl, I.
    Conibeer, G.
    Green, M. A.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) : 2238 - 2243
  • [9] Improving solar cell efficiency with optically optimised TCO layers
    Fleischer, K.
    Arca, E.
    Shvets, I. V.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 101 : 262 - 269
  • [10] Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells
    Gangopadhyay, U
    Kim, KH
    Mangalaraj, D
    Yi, JS
    [J]. APPLIED SURFACE SCIENCE, 2004, 230 (1-4) : 364 - 370