Existence of infinitely many periodic solutions for ordinary p-Laplacian systems

被引:30
作者
Ma, Shiwang [1 ]
Zhang, Yuxiang [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Periodic solution; Ordinary p-Laplacian system; Minimax technique; 2ND-ORDER HAMILTONIAN-SYSTEMS; SUBHARMONIC SOLUTIONS;
D O I
10.1016/j.jmaa.2008.10.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of non-trivial periodic solutions of ordinary p-Laplacian systems by using the minimax technique in critical point theory. We also give an example to illustrate that the obtained results are new even in the case p = 2. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:469 / 479
页数:11
相关论文
共 16 条
[1]  
[Anonymous], CBMS REG C SER MATH
[2]  
[Anonymous], 1989, APPL MATH SCI
[3]  
Bartolo P, 1983, NONLINEAR ANAL, V7, P241
[4]  
Cerami G., 1978, Ren. Acad. Sci. Lett. Ist. Lomb, V112, P332
[5]  
Fei G., 2002, ELECT J DIFFERENTIAL, V08, P1
[6]   Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems [J].
Jiang, Qin ;
Tang, Chun-Lei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :380-389
[7]  
PASCA D, 2008, NONLINEAR A IN PRESS
[8]   PERIODIC-SOLUTIONS OF HAMILTONIAN SYSTEMS [J].
RABINOWITZ, PH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (02) :157-184
[9]   ON SUB-HARMONIC SOLUTIONS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (05) :609-633
[10]   Notes on periodic solutions of subquadratic second order systems [J].
Tang, CL ;
Wu, XP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (01) :8-16