Modeling of Solar Energy Potential in Libya using an Artificial Neural Network Model

被引:0
|
作者
Kutucu, Hakan [1 ]
Almryad, Ayad [1 ]
机构
[1] Karabuk Univ, Dept Comp Engn, Karabuk, Turkey
来源
PROCEEDINGS OF THE 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP) | 2016年
关键词
Artificial neural network; solar-radiation potential; renewable energy; Libya; RADIATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we develop an artificial neural network model to predict the potential of solar power in Libya. We use multilayered, feed-forward, back-propagation neural networks for the mean monthly solar radiation using the data of 25 cities spread over Libya for the period of 6 years (2010-2015). Meteorological and geographical data (longitude, latitude, and altitude, month, mean sunshine duration, mean temperature, and relative humidity) are used as input to the network. The solar radiation is in the output layer of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation for training and testing datasets are higher than 98%. Hence, the predictions from ANN model in locations where solar radiation data are not available has a high reliability.
引用
收藏
页码:356 / 359
页数:4
相关论文
共 50 条
  • [31] Artificial Neural Network Model for Solar Resource Assessment: An Application to Efficient Design of Photovoltaic System
    Santiago, Robert Martin C.
    Bandala, Argel A.
    Dadios, Elmer P.
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2672 - 2676
  • [32] Modeling of lime production process using artificial neural network
    Daeichian, Abolghasem
    Shahramfar, Rana
    Heidari, Elham
    CHEMICAL PRODUCT AND PROCESS MODELING, 2022, 17 (06): : 655 - 667
  • [33] Solar Irradiance Fluctuation Prediction Methodology Using Artificial Neural Networks
    Kamadinata, Jane Oktavia
    Ken, Tan Lit
    Suwa, Tohru
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (03):
  • [34] Forecasting net energy consumption using artificial neural network
    Soezen, Adnan
    Akcayol, M. Ali
    Arcaklioglu, Erol
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2006, 1 (02) : 147 - 155
  • [35] Estimation of the energy of a PV generator using artificial neural network
    Almonacid, F.
    Rus, C.
    Perez, P. J.
    Hontoria, L.
    RENEWABLE ENERGY, 2009, 34 (12) : 2743 - 2750
  • [36] Analysis of heat pipe solar collector using artificial neural network
    Sivaraman, B.
    Mohan, N. Krishna
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2007, 66 (12): : 995 - 1001
  • [37] Solar radiation prediction using Artificial Neural Network techniques: A review
    Yadav, Amit Kumar
    Chandel, S. S.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 : 772 - 781
  • [38] Artificial neural network model for performance evaluation of an integrated desiccant air conditioning system activated by solar energy
    Aly, Ayman A.
    Saleh, B.
    Bassuoni, M. M.
    Alsehli, M.
    Elfasakhany, A.
    Ahmed, Khaled I. E.
    AIMS ENERGY, 2019, 7 (03) : 395 - 412
  • [39] Forecast of solar energy resource by using neural network methods
    Fiorin, Daniel V.
    Martins, Fernando R.
    Schuch, Nelson J.
    Pereira, Enio B.
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2011, 33 (01):
  • [40] Artificial neural network model as a potential alternative for groundwater salinity forecasting
    Banerjee, Pallavi
    Singh, V. S.
    Chatttopadhyay, Kausik
    Chandra, P. C.
    Singh, Bhoop
    JOURNAL OF HYDROLOGY, 2011, 398 (3-4) : 212 - 220